4 Authentication, Hashing and
Digital Certificates

1 http://www.asecuritysite.com/security/information/chapter04

4.1 Objectives

The key objectives of this unit are to:

e Provide an understanding of various authentication methods, including the us-
age of biometrics.

e Define the usage of digital certificates and in private key signing.

e Define the integration of hash methods, and their applications.

4.2 Introduction

The previous chapter outlined the way data can be encrypted so that it cannot be
viewed by anyone other than those it is intended for. With private-key encryption,
Bob and Alice use the same secret key to encrypt and decrypt the message. Then, us-
ing a key interchange method such as Diffie-Hellman, Bob and Alice can generate the
same secret key, even if Eve is listening to their communications. With public-key
encryption, Bob and Alice do not have the this problem, as Alice can advertise her
public key so that Bob can use it to encrypt communications to her. The only key that
can decrypt the communications is Alice’s private key (which, hopefully, Eve cannot
get hold off). We now, though, have four further problems:

e How do we know that it was really Bob who sent the data, as anyone can get Al-
ice’s public key, and thus pretend to be Bob?

e How can we tell that the message has not been tampered with?

e How does Bob distribute his public key to Alice, without having to post it onto a
Web site or for Bob to be on-line when Alice reads the message?

e Who can we really trust to properly authenticate Bob? Obviously we can’t trust
Bob to authenticate that he really is Bob.

For this we will look at the usage of hashing to finger-print data, and then how Bob’s
private key can be used to authenticate himself. Finally, we will look at the way that
a public key can be distributed, using digital certificates, which can carry encryption
key. This chapter will show the importance of authentication and assurance, along
with confidentiality (Figure 4.1), and the usage of biometrics.

W.Buchanan 1

Authentication

(Device, . Confidentiality . Assurance
User, Servers, (Encryption) (Integrity)

Connections, etc)

N

bk 2 e
0 ¢«

3 % -)

Figure 4.1 Authentication, confidentiality and assurance

5o

A key concept in authentication is the way that different entities authenticate them-
selves, where it could be one end to the other, or with a mutual authentication. The
main methods are: one-way server authentication; one-way client authentication; and
mutual authentication (Figure 4.2). With one-way sever authentication, the server
sends its authentication credentials to the client, such as a digital certification. The
client then checks this, to see if it is trusted. This is the method used by SSL when a
connection is made, which is used by the secure application protocols of HTTPS,
FTPS, SSH, and so on.

Another key concept in authentication is that of end-to-end authentication, where the
user authenticates themselves to the end service (Figure 4.3) or with intermediate au-
thentication, where only part of the converstation between the entities is
authenticated. The major problem with intermediate authentication is that only a de-
vice is typically authenticated, so a user could pretend to a valid user, by either
spoofing a valid device, or by using the user’s device. It is also possible to have both
intermediate and end-to-end authentication, where intermediate devices can authen-
ticate themselves to each other, where the client might also authenticate themselves
to the server/service. This has the advantage of making sure that the route taken for
the data packets goes through a valid route, such as for data packets between two
organisational sites.

2 Security and Forensic Computing

One-way server authentication. Server provides
authentication to the client, such as SSL (HTTPS,
FTPS, etc). D

&y

Device

One-way client authentication. Client provides
Arithantiantinn +A tha aarmiar aiinh aca EA D_TLS in
autlliciiuvalvll WU uic Sscivel suull as LAr

1D Wireless.

D

QG

Mutual authentication. Client and server provide 1D
to authenticate each other. Examples include PEAP in
wireless.

-m
r
%

. 5

Figure 4.2 One-way and mutual authentication

User

Device

3

Server Service

i///o/,>

Intermediate Intermediate
device device

f
\ J

End-to-end authentication

User

Device Service

Intermediate Intermediate
device device

Intermediate authentication

Figure 4.3 End-to-end authentication

W.Buchanan 3

4.3 Methods of authentication

There are many ways to authenticate devices, applications, and users, each with their
strengths and weaknesses. These include:

e Network/physical addresses. These are a simple method of verifying a device.
The network address, such as the IP address, though, can be easily spoofed, but
the physical address is less easy and is a more secure implementation. Unfortu-
nately, the physical address can also be spoofed, either through software
modifications of the data frame, or by reprogramming the network interface card.
Methods of authentication include DHCP, in which an IP address is granted to a
host based on a valid MAC address.

e Username and password. The use of usernames and passwords are well known
but are often open to security breaches, especially from dictionary attacks on
passwords, and from social engineering attacks. In wireless networks, methods
such as LEAP include a username and password for authentication, but this also
is open to dictionary-type attacks.

e Authentication certificate. This verifies a user or a device by providing a digital
certificate which can be verified by a reputable source. In wireless networks, such
methods include EAP-TLS and PEAP. Sometimes it is the user/requester that has
to provide a certificate (to validate the user), whereas in other protocols it is the
server that is required to present a certificate to the user (to validate the server).

e Tokens/Smart cards. With this method a user can only gain access to a service
after they have inserted their personal smart card into the computer and, typical-
ly, enter some other authentication details, such as their PIN code. In wireless
networks, methods include RSA SecurID Token Card and Smartcard EAP.

e Pre-shared keys. This uses a pre-defined secret key. In wireless networks, meth-
ods include EAP-Archie.

e Biometrics. This is an improved method than a physical token where a physical
feature of the user is scanned. The scanned parameter requires to be unchanging,
such as fingerprints or retina images.

e OpenlD. This type of authentication uses an URL (or XRI — Extensible Resource
Identifier) to authentificate themselves from an trusted identity provider.

Unfortunately, there is often a trade-off between the robustness and authenticity of
the method versus the ease of use, as illustrated in Figure 4.4. The move, though, is
towards multiple methods of authentication, such as something you know?, some-
thing you have? and something you are? This is illustrated in Figure 4.5.

4 Security and Forensic Computing

D Biometrics

Token Cards/Soft
Tokens

S/Key (OTP for ») —
terminal login) D Digital Certificate — §

Username/password =
(ageing)

Robustness of authentication

] Username/password
- (static)

DHCP/Mac address @ @
validation J

No username/
password

Ease-of-use

Figure 4.4 Robustness of authentication against ease-of-use

Digital
certificate

Network/physical
address

Palm
prints

Something you q Something you
Finger prints are have

Smart card

'? Mother’s maiden name
Username/ -
password Something you
know

Figure 4.5 End-to-end authentication

4.4 Biometrics

There are many reasons to identify a user, such as in financial applications, immigra-
tion and border control, social services, health care, network access, and in law
enforcement. The accuracy of the authentication method, the cost of application, and
the way that the user is scanned are obviously key factors. As we are detailing with
human attributes, there are many ways of authenticating users, each of which have
their weaknesses, and many are based on identifying an unchanging factor. Unfortu-
nately traditional authentication methods, such as using passwords and digital
certificates, are not perfect, and are typically open to abuse, especially with social en-
gineering attacks. The use of biometrics, though, where a physical feature of a person
is used, is thus an enhancement in secure environments, and in applications where
username/passwords and physical device security are difficult. It is also a good

W.Buchanan 5

method in that users often do not need to memorize a password or secret phrase, or
to carry a physical token. The key elements of any biometric technique are:

e Universality. This relates to the human features which translate to physical char-
acteristics such as finger prints, iris layout, vein structure, DNA, and so on.

e Distinctiveness. This relates to the characteristics that make the characteristic
unique.

e Permanence. This relates to how the characteristic changes over time. Typical
problems might be changes of hair length and colour, over a short time, and, over
a long time, skin flexibility.

e Collectability. This relates to the manner of collecting the characteristics, such as
for remote collection (non-obtrusive collection), or one which requires physical or
local connection to a scanning machine (obtrusive collection).

e Performance. This relates to the accuracy of identification, which is typically
matched to the requirement. For example, law enforcement typically requires a
high level of performance, while network access can require relevantly low per-
formance levels.

e Acceptability. This relates to the acceptability of the method by users. For exam-
ple, iris scanning and key stroke analysis are not well accepted by users, while
hand scans are fairly well accepted. The acceptability can also vary in application
domains, such as fingerprint analysis is not well liked in medical applications, as
it requires physical contact, but hand scans are fairly well accepted, as they are
typically contactless.

In the order of the typical correctness of the authentication method the key tech-
niques are:

e DNA. This involves matching the DNA of the user, and is obviously osooiensa

LT

one of the best methods of authentication, but has many legal/moral
issues. It is typically only used in law enforcement applications, and
also suffers from the fact that other information can be gained from
DNA samples such as for medical disorders. It is also costly as a bi-
ometric method, but it is by far the most reliable. The time to sample o

and analyze is fairly slow, taking at least 10 minutes to analyze. Fi- shotiace
nally, the methods used to get the DNA, such as from a tissue or
blood sample can be fairly evasive, but newer methods use hair and skin sam-
ples, which are less evasive.

e Finger prints. This involves scanning the finger for unique fea-

tures, such as ridge endings, sweat ports, and the distance
between ridges, and comparing them against previous scans. It is
one of the most widely used biometric methods, and is now used
in many laptops for user authentication. Unfortunately, the quali-
ty of the scan can be variable, such as for: dirty, dry or cracked
skin; pressure or alignment of the finger on the scanner; and for surface contami-
nation. The main methods used include thermal, optical, tactile capacitance, and

ultra-sound.

6 Security and Forensic Computing

Iris recognition. This method uses the fact that everyone
has a unique iris, which is fairly complex in its pattern.
This includes key characteristic markings such as the co-
rona, filaments, crypts, pits, freckles, radial furrows and
striations. It is one of the best methods of authentication,
and it is extremely difficult to trick the system, such as
with the eye of a dead person, or an artificial one. It is,

though, affected by glasses which affect the quality of the image. There are,
though, some ethical issues associated with this method, and it is fairly costly to
implement, along with being fairly evasive in its usage, where the user must look
into a special sensor machine (although mobile phones
are now being fitted with iris scanners). The accuracy
obviously depends on the resolution of the scanner, and
the distances involved.

Retina scan. This method shines a light into the eye, and
then analyses the blood vessels at the back of the eye for
a specific pattern. It is seen as a good method of authen-
ticating users, but it does need careful alignment for
creditable scans, and, because a light is shined into the eye, it may do some long

term damage to the eye.
Face recognition. This method scans the face for either
a 2D or 3D image, and performs pattern matching to
determine the likeness to a known face. Along with op-
tical scanning, it can also use infrared (thermal)
scanning, and, typically, tries to analyze a face the way
that a human would. This includes the distance be-
tween the eyes, width of forehead, size of mouth, chin
length, and so on. Unfortunately, it suffers from per-
manence factors that cause the face to change, such as
facial hair, glasses, and, obviously, the position of the
head. It can, though, be used as a remote sensor and an unobtrusive sensor, but
the further the face is away from the scanner, typically, the ‘\

\'i .
Hand geometry. With this method a 2D or 3D image is taken of .
the hand, and the system measures key parameters, such as the

length of the fingers, the position of knuckles, and so on. It is g,
one of the most widely used methods, and is one of the most

poorer the matching process.

acceptable from a user point-of-view, but it can be inaccurate, and thus should be
only used in low to medium risk areas. It also has the

advantage that it is typically contactless, and can han- IR
dle fairly high volumes of users. Its main application is il
typically in building/room access. 0

Vein Pattern. This typically involves scanning the back ' |

of a hand when it is making a fist shape. The vein il

structure is then captured by infrared light. Finger
view recognition is a considerable enhancement to this

W.Buchanan 7

where the user inserts their finger into a scanner, and produces good results for
accurate recognition.

e Voice recognition. This involves analyzing speech against a known pattern for a
user, as the resonance in the vocal tract, and the shape and size of the mouth and
nasal cavities give a fairly unique voice print. Typically it is used with a limited
range of words, such as for passwords or pass phrases. It has the advantage that
it can be used remotely, especially in telephone applications, but degrades with
background noise, along with changes to a users voice, such as when they have a
cold, or when they’ve been over exercising their voice (such as after they have
been singing for a length of time).

e Keystroke. This involves analyzing the keystrokes of a
user, for certain characteristics, such as typing speed, typi-
cal typing errors, time between certain keys, and so on. It
is, because of the thought of keyloggers, one of the least
liked authentication methods, and also suffers from
changes of behaviour, such as for fatigue and distractions.
It can, though, also be matched-up with other behavioural aspects to more clearly

identify the user, such as in matching up their mouse stokes, applications that
they run, and so on.

e Ear shape. This involves analyzing the shape of the ear, and has not been used in
many applications. It is normally fairly obtrusive, and can involve the user pos-
ing in an uncomfortable way.

e Body odour. This involves analyzing the body odour of a user for the chemicals
they emit (knows as volatiles) from non-intrusive parts of the body, such as from
the back of the hand.

e Personal signature. This involves analyzing the signing process of the user, such
as for the angle of the pen, the time taken for the signature, the velocity and ac-
celeration of the signature, the pen pressure, the number of times the pen is lifted,
and so on. It is not the strongest method of authentication, as a signature pattern
can be learnt, but it has the advantage that it can be integrated with the tradition-
al method of signatures, and thus can be legally binding.

4.5 Message hash

The finger-printing of data was solved by Ron Rivest, in 1991, with the MD5 algo-
rithm (Figure 4.6). It uses a message hash which is a simple technique which
basically mixes up the bits within a message, using exclusive-OR operations, bit-
shifts, and/or character substitutions. These are typically used to either provide:
some form of conversion between binary and text; support the storage of passwords;
or in authentication techniques to create a unique signature for a given sequence of
data. The main techniques are:

e Base-64 encoding. This is used in electronic mail, and is typically used to change
a binary file into a standard 7-bit ASCII form. It takes 6-bit characters, at a time,
and converts them to a printable character.

e UNIX password hashing. This is used in the passwd file which contains the
hashed version of passwords. It is a one-way function, so that it is typically not

8 Security and Forensic Computing

possible to guess the password from the hashed code, but if the hashed code for
the given word is known, it will always give the same hashed code. For example,
the hashed version of “password” is “YigNs8zY3WzuY”. Thus, as the
/etc/passwd file is available in a plain text form, a user with this hashed code has
the weak password of password. Weak passwords can obviously be beaten with a
dictionary attack, where an off-line program can be used to search through a
known dictionary of common words and which matches the hashed codes
against the one in the passwords file. These problems have been partially over-
come with a shadow password file (/etc/shadow) which can only be viewed by
the administrator.

e NT password hashing. In most versions of Microsoft Windows, there was no
password file, as in UNIX, and passwords was stored as password hashes in the
Windows Registry. It is thus open to a dictionary attack in the same way that
UNIX is exposed to it. Along with this, it has several other weaknesses which re-
duce the strength of the password. This includes converting the password into
upper case between hashes, and in splitting it into two parts.

e MDS5. This is used in several encryption and authentication methods, and is
standardized in RFC1321. It produces a 32 hexadecimal character output (128-
bits), which can also be converted into a text, such as shown in Figure 4.6.

e SHA (Secure Hash Algorithm). This is an enhanced message hash, which pro-
duces a 40 hexadecimal character output (160-bits). It will thus produce a 40
hexadecimal character signature for any message from 1 to 2,305,843,009,
213,693,952 characters. At present it is not computationally feasible to determine
the original message from a SHA-1 function, or to find two messages which pro-
duce the same hash function, as illustrated in Figure 4.7. For SHA-2, it is possible
to generate 256-, 384- or 512-bit signatures.

Web link: http://buchananweb.co.uk/security03.aspx [MD5/SHA-1]

Web link: http://buchananweb.co.uk/security03a.aspx [MD5/SHA-1 with Base-64]
Web link: http://buchananweb.co.uk/security03b.aspx [MD5/SHA-1 with salt]

W.Buchanan 9

Hashing
Algorithm (MD5)

- 128 bit signature

| hello [—— -

| Hello [X

| Hello. How areyou? | .

[Naper | X
Base-64

hello

CC708153987BF9AD833BEBF90239BFOF
8F83571F9324AE4E23D773753055C7B6

Figure 4.6 MDS5 algorithm

Ml 8B1A9953C4611296A827ABF8C47804D7

| | -
| |
] Hello. How are you? \ B
] Napier ‘ B

Hashing
Algorithm (SHA-1)

- 160 bit signature

| hello .
| Hello -
[Hello. Howareyou? |
[Naper] .

Base-64

AAF4C61DDCCSE8A2DABEDEOF3B482CDOAEA9434D

F7FFOE8B7BB2E09B70935A5D785E0CC5D9DOABFO

| .
| | .
| Hello. Howareyou? |
| [c-5155455577 56 464764EACoBCABMEBADA

Napier

Figure 4.7 SHA-1 algorithm

10 Security and Forensic Computing

For example, if a message was:

Hello, how are you?
Are you feeling well?

Fred.
then the MD5 hash for this is:
518bb66a80cTt187a20elb07cd6cef585

For example, the text:

Security and mobility are two of the most important issues on the In-
ternet, as they will allow users to secure their data transmissions,
and also break their link their physical connections.

gives:
91E2AB34D0B2DE28700A0E94071BCC46

where as:

Security and mobility are two of the mast important issues on the In-
ternet, as they will allow users to secure their data transmissions,
and also break their link their physical connections.

gives:
CODA7FCC869C1E94687BF1CABAAB780B

It can be seen that one character of a difference changes the hash value, greatly. We
can do the same for system and binary files, such as determining the message code
for the DLL’s in Windows\ system32:

455D04D3EBDE98FB5AB92B7363DFF33D
12B4C8208B5146C8D17F3F502E00A540
441086F355FODEA94621984C9A3BE765
A9517EC6F843959566692570390C457F c:\windows\system32\acledit.dll
E92003F404A889BBADF70E8743E498B9 c:\windows\system32\aclui .dll

c:\windows\system32\6to4svc.dll
c
c
c
c
A68B17394C4CADECFABEB1588E820590 c:\windows\system32\activeds.dll
c
c
c
c
c

\windows\system32\aaaamon.dl1
\windows\system32\acctres.dll

9C752C5E1C5AB8A8F6D3BDA4CE87B82C c:\windows\system32\ActPanel .dl1
27D39C82785A9DC831C4C2BAESB6AEOO c:\windows\system32\actxprxy.dll
8DC922A2662C51E928B0O8BA50A7609F8 c:\windows\system32\admparse.dll
381915766C2A5E47A7DB95423CEO9A16 c:\windows\system32\AdobePDF.dl1
D0O5AB88927849DF74CF4F1C303DAEB4F c:\windows\system32\adptif.dll

This allows us to check that files have not been changed. The hash function is thus
useful in creating a one-way function which cannot be reversed. UNIX passwords,
for example, are hash functions. It has a wide scope of applications, from authenticat-
ing: users and devices; applications; and DLLs, to fingering data, files and even the
complete contents of disk drives.

W.Buchanan 11

4.6 Authenticating the sender

The next two problems that we have is how to authenticate the sender, and also, how
to prove that the message has not been tampered with in any way, even by the send-
er of the message. The main difference between the authentication and verification
process from the encryption one, is that when Bob is sending a secret and authenti-
cated email to Alice, Bob uses his private-key to encrypt an authentication message
(which has been hashed), as illustrated in Figure 4.8. It can be seen that an MD5 hash
is taken of the original message, and that this added to the message, and these are
then encrypted with Alice’s public key (Figure 4.9). This hash signature provides the
authentication of Bob, and also that no-one has tampered with the encrypted mes-
sage (as not even Bob can now decrypt the encrypted message). When received, the
encrypted message is then decrypted (Figure 4.11) with the Alice’s private-key. This
gives the original message, and the encrypted hash signature. The only key which
will decrypt this is Bob’s public key, which will thus authenticate him as the sender,
as only he will have the correct private key to initially encrypt the authentication
message (Figure 4.12). Alice then computes the MD5 signature for the received mes-
sage, and check it against the decrypted hash signature that Bob computed. If they
are the same, the message has not been tampered with, and that it was really Bob
that sent the email. The only major problem now is how do we send Bob’s public key
to Alice? The methods used with this will be covered in the sections on digital certifi-
cates (Section 4.6), PKI infrastructures (Section 4.6) and the usage of the Kerberos
server (Section 4.8).

Message -

Message

Encrypted
MD5

Bob’s vz
private (
key

Bob’s

Bob public
key

Figure 4.8 Initial part of authentication

12 Security and Forensic Computing

Message

Message

Encrypted
MD5

Bob’s
private
key
, Alice’s @
e
key key
Alice’s A
private (
key
Figure 4.9 Encrypting
Message
Message
Encrypted
L MD5

Bob’s
private
key

Bob’s
public
key

&

Alice’s
public
key

Alice’s o,
private 6’

key

Figure 4.10 Decrypting

W.Buchanan 13

Message
Message

Encrypted
MD5

Bob’s A
private
key

Bob’s

public
key

_—

Alice’s
Message E:S"c
Encrypted Alice’s

MD5 private
key |

Figure 4.11 Verifying the sender

o

Message
Message

Encrypted
MD5

Bob’s T 7.
private ér
key

Bob’s

public
key

14

MD5 (message)

MDS5 (result)

Encrypted
MD5

Figure 4.12 Verifying the sender

Security and Forensic Computing

4.7 Digital certificates and PKI

From Section 4.5, we have seen that it is possible for Bob to sign a message with his

private key, and that this is then decrypted by g 2%
Alice with her public key. There are many ways | ...l vews [cersioson oo

that Alice could get Bob’s public key, but a ma- | s.. =

jor worry for her is that who does she trust to e Ve 3
receive his public key? One way would be for | Fee B e o
Bob to post his public key on his web site, but ;;';‘f;::mm e et
what happens if the web site is down, or if it is a iﬁ:;;jf,f:; e
fake web site that Alice uses. Also if Alice asked || gt st e dmc2em. B

Bob for his public key by email, how does she
really know that Bob is the one who is respond-
ing? Thus we need a method to pass public
keys, in the verifiable way. One of the best ways

is to provide a digital certificate which contains, EditPropertes | [_CopytoFie. |

amongst other things, the public key of the enti-
ty which is being authenticated. Obviously

anyone could generate one of these certificates, so there are two ways we can create
trust. One is to setup a server on our own network which provides the digital certifi-
cates for the users and devices within an organization, or we could generate the
digital certificate from a trusted source, such as from well-known Certificate Authori-
ties (CAs), such as Verisign, GlobalSign Root, Entrust and Microsoft. These are
generated by trusted parties and which has their own electronic thumbprint to verify
the creator, and thus can be trusted by the recipient, or not.

4.7.1 PKI and Trust

The major problem that we now have is how to determine if the certificate we get for

Bob is creditable, and can be trusted. The method

used for this is to setup a PKI (Public Key Infra- | ™" st/ coitimbet

structure), where certificates are generated by a [=2] cerutcate information
trusted root CA (Certificate Authority), which is This certcate e ntered fonthe fllowing purpose(s)

+1.3.6.1.4.1.6449.1.3.5.2

trusted by both parties. As seen in Figure 4.13, Bob
asks the root CA for a certificate, for which the CA
must check his identity, after which, if validated,
they will grant Bob a certificate. This certificate is

* Refer to the certification authority's statement for details,

Issued bo: Eill Buchan

Issued by: LUTN-USERFirst-Client Authentication and Emai

digitally signed with the private key of the CA, so
that the public key of the CA can be used to check
the validity of it. In most cases, the CA’s certificate
is installed as a default as a Trusted Root Certificate
on the machine, and is used to validate all other
certificate issued by them. Thus when Bob sends his certificate to Alice, she checks
the creditability of it (Figure 4.14), and if she trusts the CA, she will accept it'. Unfor-

Walid from 25/04/2007 to 25/04/2008

@ You have a private key that corresponds to this certificate.

| Isster Shatement |

1 Unfortunately many people when faced with a certificate will not actually know if the CA is
a credible one, or not, and this is the main weakness of the PKI/digital certificate system.

W.Buchanan 15

tunately, the system is not perfect, and there is a lack of checking of identities from
CA, and Eve could thus request a certificate, and be granted one (Figure 4.15). The
other method is to use a self-signed certificate, which has no creditability at all, as
anyone can produce a self-signed certificate, as there is no validation of it. An exam-
ple of this is shown on the right-hand side (on the previous page), where a certificate
has been issued to Bill Buchan (even though the user is Bill Buchanan).

Digital Certificates

Digital certificates are a soft
token of authentication, and
require a trust mechanism.

Who do we trust to get
Bob’s certificate ... we
can’t trust Bob, as he
may be Eve... meet Trent.

Figure 4.13 Getting a certificate

There are many cases of self-signed certificate, and of certificates which are not valid, faking
the user.

16 Security and Forensic Computing

Trusted Root CA

Certificate Authority (CA)
5 - Able to grant

Eve tricks the CA to ~ N certificates

get a certificate with o7 Examples; Verisign,

Bob’s name e Entrust, Microsoft Trust.

P 7
e
Ve
e Trusted root certificates

are installed as a default

on the machine (or

installed with the user's v
permission)

I
> I
I
I

Trusted root certificate

~ =~ Alice checks the signature of the
certificate to validate Bob.
Both Alice and Bob trust the
CA (Trent) as a third party.

Figure 4.14 Alice checks the certificate

Trusted Root CA

Certificate Authority (CA)
8 - Able to grant

Eve tricks the CA to ~ < certificates

get a certificate with o7 Examples; Verisign,

Bob’s name e Entrust, Microsoft Trust.

P 7
e
Ve
g Trusted root certificates

I
are installed as a default }
on the machine (or |
installed with the user's ¥

permission) Trusted root certificate

—* Alice checks the signature of the
certificate to validate Bob.
Both Alice and Bob trust the
CA (Trent) as a third party.

Figure 4.15 Eve spoofs Bob

Thus our trusted root CA, which we will call Trent, is trusted by both Bob and Alice,
but at what level of trust? Can we trust the certificate for authenticating emails, or
can we trust it for making secure network connections? Also, can we trust it to digital
sign software components? It would be too large a job to get every entity signed by
Trent (the root authority), so we introduce Bert, who is trusted by Trent to sign on his
behalf for certain things, such as that Bert issues the certificate for email signing and
nothing else. Thus we get the concept of an intermediate authority, which is trusted

W.Buchanan 17

to sign certain applications (Figure 4.16), such as for documentation authentication,
code signing, client authentication, user authentication, and so on.

Note that there are typically two digital certificates in use. The one that is created by
the CA that has both the private and public key on it (and can be stored on a USB
stick, so that the encryption keys can be recovered at any time), and there is one that
is distributed which does not have the private key (for obvious reasons).

4.7.2 Digital certificate types
Typical digital certificate types are:

- IKE.

- PKCS #7.

- PKCS #10.

- RSA signatures.

X.509v3 certificates. These are exchanged at the start of a conversion to authenti-
cate each device.

Certificates [?IE]
Intended pepose: il w ")
teemedite Cortie i et - <+ | Trusted Root CA CeSrtlflcate purploses.
e T e Tl . Secure email.

Macrnsoft futhenticodeltm)... 3111271999

Server authentication.
« Code signing.
. Driver authentication.

... Marislt R

.. HalLotk E
bt ock Kojegraci v MelLock K
Elmetiock uzlet (ass 1) T,

Mstlock Uzleti (Class U) T8, SOMUZSZULY Netlockd

E\DLIN‘ILII\‘ ACODPTED, ... MO LLAZILITY ACCERILD, (... ;r;m’:\m Veritegn . Time stamping.
e i, el . Client authentication.
« IP tunnelling.
[import.. | [pwot.. | [gemove advanced...

. EFS (Encrypted File

e System).
Trusted Root CA

- always trusted

Coxtdicabe iterated puperes

=)
= \

\ Igpended puepose: | <Al

=

\ Inbgrmediste Lertificabon Athorkits | Trusted Rnat CrrtFication Authorties | Trusted Publ £ *
Certifieate 7% \
\ issd To Issued by _ Capratio. FreA
Gerersl | Derads | Certification Path [Edare cyberTrust Rt PRinnt SGC Authoeiy ZHOR[006 <t
P \ [Elstrnsofr internet uthoriry GTF CyberTnu ClohalRoct 230202007 <
P \ [t rumdt Teroet Autherity OTE CyberTount Gobod Mok LROH[Z007 <t
E :d Cortificate Tnlorsmabic

\ [ElMicrusclt Sevurs Server Auttrrky Microsolt Iiternet futhoriky 230272007 <

[EMicruslt Sevure Server Aultrrky Microsolt Iiternet futhoriky L4009 <he

This CA Root certificabe is nol brusbed, To enable brust, T
Install this certificate in the Trusted Root Certification -

N

\ [Eletrascit windaws Hardwars L., Merosoft Koot Authanty Jf1zpaee <
ies store, z

E= oot Windows Hardwere ... Mrosoft Foot Authonty
| Root S5 Authorky

Self signed
- Can never be trusted

Issued toc Wil Buchanan

Trust2

= (Come) e

ke leraded e

Sigriewg, Windores Hardwars Driver Yerdication

Issued by: Willam Buchanan

o]
Valid froen ZZ02/2007 to 29/01{2107 Intermed iate CA]
F Youbave s —| -Can be trusted for some —
things
siceizeu+ .o —. ——chanan
=1

Figure 4.16 Trusted root CA, intermediate CA and self-signed

A key factor in integrated security is the usage of digital certificates, and are a way of
distributing the public key of the entity. The file used is typically in the form of
X.509 certificate files. Figure 4.17 and Figure 4.18 shows an example export process to
a CER file, while Figure 4.19 shows the actual certificate. The standard output is in a

18 Security and Forensic Computing

binary format, but a Base-64 conversion can be used as an easy way to export/import
on a wide range of systems, such as for the following;:

————— BEGIN CERTIFICATE---—-

M1 1D2zCCA4WgAw I BAg I KWHROCQAAAABEU j ANBgkghk 1 GOWOBAQUFADBgMQswCQYD
VQQGEWJHQ jERMABGALUEChMIQXNJZXJ0aWEXJ JAKBgNVBASTHUNSYXNz IDEgQ2Vy
dGImaWNhdGUgQXV0aG9yaXR5MRYWFAYDVQQDEwW1BCc2NIcnRpYSBDQSAXMBAXDTAZ2
MT IxXNz IXxMDQOOVOoXDTA3MT I xNz I xMTQOOVowgZ8xJ j AkBgkghk i GOWOBCQEWF3cu
YnVjaGFuYW5AbmFwaWVyLmFjLnVrMQswCQYDVQQGEWJIVSZzEQMA4GALUECBMHTG9O0
aGlhbj ESMBAGALUEBXMIRWRpbmJ1cmdoMRowGAYDVQQKEXFOYXBpZX1gVW5pdmVy

H+vXh L9yaOw+Prpzy7ajS4/3xXU8VRANhyU9yU4qDA==
————— END CERTIFICATE----—-

The CER file format is useful in importing and exporting single certificates, while
other formats such as the Cryptographic Message Syntax Standard — PCKS #7 Certifi-
cates (.P7B), and Personal Information Exchange — PKCS #12 (.PFX, .P12) can be used
to transfer more than one certificate. The main information for a distributable certifi-
cate will thus be:

e The entity’s public key (Public key).

e The issuer’s name (Issuer).

e The serial number (Serial number).

e Start date of certificate (Valid from).

e End date of certificate (Valid to).

e The subject (Subject).

e CRL Distribution Points (CRL Distribution Points).

e Authority Information (Authority Information Access). This will be shown when
the recipient is prompted to access the certificate, or not.

e Thumbprint algorithm (Thumbprint algorithm). This might be MD5, SHA1, and
SO on.

e Thumbprint (Thumbprint).

The certificate, itself, can then be trusted to verify a host of applications (Figure 4.20),
such for:

e Server authentication.

e C(Client authentication.

e Code signing.

e Secure email.

e Time stamping.

e IP security.

e Windows hardware driver verification.

e Windows OEM System component verification.
e Smart card logon.

e Document signing.

W.Buchanan 19

Certificates

Intended purpose: <All=

Trusted Root Certification Authorities
Issued By

Class 3P Primary CA
Class 3T5S Primary CA

Issued To
[E class 3P Primary CA
[E class 375 Primary CA
Copyright {c) 1997 ...

Certificate intended purposes

Secure Email, Server Authentication

Trusted Publishers

Copyright {c) 1997 Mi...

[Elpeutsche Telekom ... Deutsche Telekom Ro...
[Elpeutsche Telekom ... Deutsche Telekom Ro...
[E=ADsT (ANX Network)... DST (ANX Network) CA
EJosT (NRF) RootCA DST (NRF) RootCA
EJosT (UPS)RootcA DST (UPS) RootCA
<l i

[Import...] [Bxport.. § [Remove

Expiratio...
06/07/201%
06/07/201%
30/12/1993
09/07/2019
09/07/201%
09/12/2018
08/12/2008
07/12/2008

Untrusted Publishers (EAEA

Certificate Export Wizard

Friendly Mame el |
CertPlus Class 3P Pri.
CertPlus Class 3T5 P,
Microsoft Timestamp
Deutsche Telekom R.
Deutsche Telekom R.
DST {ANX Network) C
DST (National Retail .
DST {United Parcel 5.4

>

| Close

Welcome to the Certificate Export
Wizard

This wizard helps you copy certificates, certificate trust
lists and certificate revocation lists from a certificate
store to your disk.

A certificate, which is issued by a certification authority, is
a confirmation of your identity and contains information
used to protect data or to establish secure netwark
connections. A certificate store is the system area where
certificates are kept.

To continue, dick Next.

Figure 4.17 Exporting digital certificates

Certificate Export Wizard

Export File Format

Certificates can be exported in a variety of file formats.

Select the format you want to use:

(%) DER encoded binary X, 509 (.CER):

() Base-64 encoded %.509 (.CER)

() Cryptographic Message Syntax Standard - PKCS #7 Certificates (.P7E)

Certificate Export Wizard

< Back ” Mext =][Cancel]

Completing the Certificate Export
Wizard

You have successfully completed the Certificate Export
wizard.

You have specified the following settings:

File Mame ci\est|
Export Keys Mo
Indude all certificates in the certification path Mo
File Format DER Er|

gL w] 3]

< Badk ” Finish][Cancel

Figure 4.18 Exporting digital certificates

Certificate E]
General | Details | Certification Path
Show: |<all= -
Field Value i
EVEI’SIOH V3
Esaﬂal number 24
ES\gnab.lre algorithm md5RSA

Elssuar Deutsche Telekom Root CA 1, ...
E\l'alid from 09 July 1999 11:34:00

E\falid to 09 July 2019 23:59:00
Esub]ect Deutsche Telekom Root CA 1, ...
[Elpublic key RSA (1024 Bits)

— Public-key

Edit Properties. .. I [Copy to File...

J

Figure 4.19 Digital certificates

20 Security and Forensic Computing

Advanced Options @EJ

Certificate purpose

Select one or more purposes ta be listed under Advanced
Purposes,

Certificate purposes:
Server Authentication
] Client Authentication
Code Signing
[] Secure Email
Time Skamping
[#] Mirrasnft Trosk Lisk Sianina

Export Farmat

Select the default drag and drop export Format when dragaging a
certificate ta a file Folder,

Export format: | DER. Encoded Binary 3,509 {*.cer) e

I O, l [Cancel

Figure 4.20 Options for signing

4.7.3 Digital Certificate reader
The C# code to read an X509 cer file is:

using System;

using System.Security;

using System._Net;

using System.Security.Cryptography.X509Certificates;

namespace ConsoleApplication3
class Classl
static void Main(string[] args)
X509Certificate cer = X509Certificate.CreateFromCertFile('c:\\test.cer™);

System.Console._WriteLine(*'Serial Number: {0}",cer.GetSerialNumberString());

System.Console _WriteLine("Effective Date: {0}",
cer._GetEffectiveDateString());

System.Console _WriteLine(""Name: {0}",cer.GetName());

System.Console.WriteLine("Public key: {0}",cer.GetPublicKeyString());

System.Console _WriteLine(""Public key algorithm: {0}",
cer.GetKeyAlgorithm());

System.Console _WriteLine("lIssuer: {0}",cer.GetlssuerName());

System.Console.ReadLine();

And the output from this is:

Serial Number: CODD5E19983C6F575EFE454E7E66AD02

Effective Date: 08/11/1994 16:00:00

Name: C=US, O="RSA Data Security, Inc.”™, OU=Secure Server Certification Authority
Public key: 308185027E0092CE7AC1AE833E5AAA898357AC2501760CADAESE2C37CEEB35786454
03E5844051C9BF8F08E28A8208D216863755E9B12102AD7668819A05A24BC94B256622566C88078FF7
81596D840765701371763E9B774CE35089569848B91DA7291A132E4A11599C1E15D549542C733A6982
B197399C6D706748E5DD2DD6C81E7B0203010001

Public key algorithm: 1.2.840.113549.1.1.1

Issuer: C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authori-

ty

W.Buchanan 21

It can be seen that this digital certificate defines the public key for the owner, and is
thus a way for a user or organisation to distribute their public key. Thus if a user
sends an authenticated message, they sign it with their private key, and the only key
which will be able to decrypt it will be the public key contained in the digital certifi-
cate. The Microsoft .NET framework includes the digital signing for software
components, which involves the creator signing them with their private key, and on-
ly the public key will be able to authenticate them. If this has changed, it will not be
authenticated, or authorized.

Web link: http://buchananweb.co.uk/security10.aspx

Web link:
http://buchananweb.co.uk/e_presentations/digital_certificates_expired.htm

Web link:
http://buchananweb.co.uk/e_presentations/digital_certificate_exporting.htm

Web link:
http://buchananweb.co.uk/e_presentations/digital_certificates_showing_browser.htm

4.8 HMAC (Hash Message Authentication Code)

HMAC is a message authentication code (MAC) that can be used to verify the integ-
rity and authentication of a message. It involves hashing the message with a secret
key, and thus differs from standard hashing, which is purely a one-way function. As
with any MAC, it can be used with standard hash function, such as MD5 or SHA-1,
which results in methods such as HMAC-MD5 or HMAC-SHA-1. Also, as with any
hashing function, the strength depends on the quality of the hashing function, and
the resulting number of hash code bits. Along with this the number of bits in the se-
cret key is a factor on the strength of the hash. Figure 4.21 outlines the operation,
where the message to be sent is converted with a secret key, and the hashing func-
tion, to an HMAC code. This is then sent with the message. On receipt, the receiver
recalculates the HMAC code from the same secret key?, and the message, and checks
it against the received version. If they match, it validates both the sender, and the
message (Figure 4.22).

Let’s say that the two routers in Figure 4.22 continually challenge each other to an-
swer certain questions. Initially they negotiate a share secret key, such as “mykey”
(or it could be set manually — but this will not be as secure) and negiotiate the HMAC
type. So a challenge might be to “Multiply 5 and 4?”. The answer would be 20, thus
using HMAC-MD5, the quizzed device will return back E298452E0
CD44830FEE1DA1C765EB486 (ref http://buchananweb.co.uk/security0l.aspx). The
challenger will then do the same conversion, and if it gets the same HMAC code, it
will know that the device on the other end is still the same one that it started the
connetion with. If not, it will disconnect, and it looks as if the original device has
been replaced with a spoofed one.

2 Typically the secret key would either be generated by converting a pass phase into the secret
key (such as in some wireless systems) or is passed through the key exchange phase at the
start of the connection (such as with Diffie-Hellman).

22 Security and Forensic Computing

Sender Receiver

I
I
I
I
I
|
I
Message > \ Message
I
f
I
I
I
|
| V/
| ¢
I
Secret ‘ Secret
key } ‘ key
| } Receiver
I

checks the HMAC code
against received one —

if they match the sender is
validated, and the message
is also confirmed

Figure 4.21 HMAC operation

— -

I I
Public | > \
Key (KpblP }
I e I
I T~ |
| ~ I
I AN
| - >
| Shared key passed (Diffie- I
A | Hellman) — used to encrypt all Iy
(| the data I
| (]
Kpvl } } |
|
I I
‘ Il %
o Hashed
Result — H\/aaSI[]j:d o value
|
* \ \
I
| Challenge?
I
|

Figure 4.22 Using symmetric encryption and asymmetric authentication

The following gives some simple .NET code for HMAC conversion:

using System;

using System._10;

using System.Text;

using System.Security.Cryptography;

// Verify with http://hashcalc.slavasoft-inc.qarchive.org/
// Verify: Message="testingl23", key="hello" gives
ac2c2e614882ce7158f69b7e3b12114465945d01

namespace hmac
class Classl
static void Main(string[] args)

string message = ""testingl23’;
string key = "hello";

W.Buchanan 23

System.Text.ASCI1Encoding encoding=new System.Text.ASCIIEncoding();
byte [] keyByte = encoding.GetBytes(key);

HMACSHA1 hmac = new HMACSHAl(keyByte);

byte [] messageBytes = encoding.GetBytes(message);

byte [] hashmessage = hmac.ComputeHash(messageBytes);
Console.WriteLine(""Hash code is "+ByteToString(hashmessage));
Console.ReadLine();

}
public static string ByteToString(byte [] buff)
{

for (int i=0;i<buff.Length;i++)

{
sbinary+=buff[i].ToString("'X2""); // hex format

return(sbinary);

For a key of “hello”, and a message of “testing123” gives:
The HMAC-SHA-1 hash code is: AC2C2E614882CE7158F69B7E3B12114465945D01

This can be checked against a Hash calculator (on the right-hand side) to verify. The
source code is at:] HashCale

[rata Format: Data:
‘Text shring j ‘lesling123

Source Code link:

K.y Format: Eey:

. WV HMAC Teut sting | |hel
http:// buchananweb.co.uk/hmac2.zip | 2
Web lil‘lk: ¥ MD5 | 1fed2cdb300564d3baetaf3957 cdzd1 f
. I~ MD4 [
http:/ /bUChananweb~C0~Uk/ SeCUl’ltY()l-aSPX WV SHAL |20 22614882071 5863 T=3b1 2114465345401

™ sHegse |
[5Heze |

With HMAC, the text string is broken-up into | - g, |

blocks of a fixed size, and then are iterated over W RIPEMD160 [blaadi127771 of7bddEbbidBT adfe7le5 3281 of
[PaMsMa |

[~ IIGER I

with a compression function. Typically, such as
for MD5 and SHA-1, these blocks are 512 bytes
each. With MD5 the output is 128 bits® and for
SHA-1 it is 160 bits, which is the same as the
standard hash functions. HMAC is used in many
applications, such as in IPSec and in tunneling
sockets (TLS).

SlaverSoft Calculate | Close Help

4.9 Future of Authentication Systems - Kerberos

The major problem with current authentication systems is that they are not scalable,
and they lack any real form of proper authentication. A new authentication architec-
ture is now being proposed, which is likely to be the future of scalable authentication
infrastructures — Kerberos. It uses tickets which are gained from an Identity Provider

3 128 bits equates to 32 hexadecimal characters (as 4-bits are used for each hex value). For
SHA-1, there are 160 bits which gives 40 hexadecimal characters.

24 Security and Forensic Computing

(IP — and also known as an Authentication Server), which are trusted to provide an
identity to a Relying Party (RP). The basic steps are:

Client to IP:

A user enters a username and password on the client.

The client performs a one-way function on the entered password, and this be-
comes the secret key of the client.

The client sends a cleartext message to the IP requesting services on behalf of the
user.

The IP checks to see if the client is in its database. If it is, the IP sends back a ses-
sion key encrypted using the secret key of the user (MessageA). It also sends back
a ticket which includes the client ID, client network address, ticket validity peri-
od, and the client/TGS (Ticket Granting Server) session key encrypted using the
secret key of the IP (MessageB).

Once the client receives messages A and B, it decrypts message A to obtain the
client/TGS session key. This session key is used for further communications with
IP.

Client-to-RP:

The client now sends the ticket to the RP, and an authentication message with the
client ID and timestamp, encrypted with the client session key (MessageC).

The RP then decrypts the ticket information from the secret key of the IP, of
which it recovers the client session key. It can then decrypt MessageD, and sends
it back a client-to-server ticket (which includes the client ID, the client network
address, validity period, and the client/server session key). It also sends the cli-
ent/server session key encrypted with the client session key.

The Kerberos principle is well-known in many real-life authentication, such as in an

airline application, where the check-in service provides the authentication, and pass-
es a token to the passenger (Figure 4.23). This is then passed to the airline security in
order to board the plane. There is thus no need to show the form for the original au-
thentication, as the passenger has a valid ticket.

W.Buchanan 25

STS Check in Airline

(Security security)
Token Relying
Service) Party

Figure 4.23 Ticketing authentication

4.9.1 Microsoft CardSpace

The Microsoft .NET 3.0 framework has introduced the CardSpace foundation
framework, which uses Kerberos as its foundation. For this it defines a personal card,
which is encrypted and created by the user, and contains basic users details on the
user, such as their name, address, email address, and so on. A managed card is creat-
ed by an IP (Identity Provider) and validates the user. The managed card thus does
not keep any personal details on login parameters and bank card details (as these are
kept off-site). The user can thus migrate one from machine to another, and migrate
their card (Figure 4.24). A personal card, of course, does not require an IP, and a card
can be passed directly to the RP (Figure 4.25).

For a managed card, the basic steps are defined in Figure 4.26. An additional ad-
vantage of CardSpace is that it supports both PKI authentication (using digital
certificates) and Kerberos, using standard protocols (all of which XML-based and
open protocols) — such as shown in Figure 4.27.

26 Security and Forensic Computing

Secure storage
of details

-

Personal Card

Managed Card

(for on-line purchases,

managed logins,
and so on

Roaming
details

Af——-

Secure communication of

details

Verification of the user

Off
machine
storage

Storage of sensitive details
(such as credit card details,
passwords, and so on)

Figure 4.24 Personal and managed cards

M
addresses,

phone
numbers, date
of birth, and
gender.

User

Relying Parity (RP)

=4

Identity Provider (IP)

Personal Card

il Bachanan
i Buchansas hotmail com

M inked Windows Live 1

@ Security

[

Figure 4.25 Personal cards

W.Buchanan 27

User @ User approves release of token

m Client

/\‘ @ @ Client wants to access a resource

@ hich IPs can satisfy requirements?

Request security toker@

@ RP provides identity requirements

©

Return security token based
on RP’s requirements
e Token released to RP

& ,

Identity Provider Relying Party
(IP) (RP)

Figure 4.26 Managed cards

Ee Identity

SAML (Security Assertion Markup
Language)

Or Custom

~—p

WS-Security Policy
User WS-Security

Identity selector

— - Security Token Service (STS) .
e Relying Parity (RP)
e Identity
: Provider (IP)
_ Open XML standards:
X509 WS-*:
Certificate @ Tt
oKl F Kerberos WS-Trust, WS-Metadata
erver
Digital Certificate Granter (Verisign) EXChange Framework

Figure 4.27 Standardized protocols

4.10 Email encryption

28 Security and Forensic Computing

A popular type of email encryption is PGP (Pretty Good Privacy) which uses a public
key to encrypt the data, and adds the private key of the user to provide authentica-
tion It can be seen, in Figure 4.28, that the first stage takes the text and produces an
MD?5 hash, which is encrypted, using RSA, with the user’s private key. As the recipi-
ent has the user’s public key, they should be able to decrypt it, and compare with the
hash of the decrypted message. After a ZIP stage, the recipient’s public key is then
used to encrypt the output of the stage, which is then converted to ASCII characters
using Base-64 (as required in standard email transmission). The recipient then uses
their private key to decrypt the received message. After which they will determine its
contents. Then they can use the sender’s public key to decrypt the hashed value. This
will then be compared with the hashed value from the message. If they are the same,
then the message and the sender have been authenticated.

The true genius of PGP is the usage of unique key to encrypt the email message. The
email is thus encrypted using IDEA and with a randomly generated key. Next the
encryption key is encrypted with Alice’s public key. At the receiver, all Alice has to
do is to decrypt the IDEA key, and then decrypt it with it. The great advantage of this
is that symmetric encryption/decryption is much faster and less process intensive
than asymmetric methods. This is similar to someone locking up all the doors in a
house, and the placing all the keys in a safe deposit box, that only one person holds
the secret code for. Once the person has closed the door on the keys, even they can-
not then get access to them, and only the person with the correct combination can get
access to them. Each time we might create new keys, but the combination can stay
the same.

HWFE

7 T _ Email
rivate-key encryption T

key
; 9 Y4
g ?._"; mic-key

,
\ -

Public-key (

1. Secret-ke

Is used to w7 " -
enoryt 0/ Secret-key -t

message.

2. RSA is used to encrypt
secret key with the

recipients public key.
&54FGds

(o secretkey

2.RSA is used to encrypt Author: Prof Bill Buchanan
secret key with the
recipients public key.

Figure 4.28 PGP

W.Buchanan 29

4.11 Tutorial

4.10.1 If Bob sends an email to Alice, which key does he use to keep the message

secret:
(a) Bob’s public key (b) Bob’s private key
(c) Alice’s public key (d) Alice’s private key

4.10.2 If Bob sends an email to Alice, which key does he use to authenticate

himself:
(a) Bob’s public key (b) Bob’s private key
(c) Alice’s public key (d) Alice’s private key

4.10.3 Which of the following is asymmetric encryption:
(a) RSA (b) DES
() AES (d) IDEA

4.10.4 Which of the following is symmetric encryption:
(@) RSA (b) DES
() AES (d) IDEA

4.10.4 Which of the following cannot be reversed with a decryption key:
(a) RSA (b) DES
(c) 3DES (d) MD5

4.10.5 Which of the following is an example of an MD5 hash signature:
(a) #54301
(b) d41d8cd98f00b204e9800998ecf8427e
(c) Sales-PC
(d) 00-ff-11-22-55-al

4.10.6 Which of the following is not part of Bob’s distributable digital certificate:
(a) Bob’s public key
(b) Bob’s private key
(c) Theissuer
(d) Date of validity

4.10.9 The following is a digital certificate (http://buchananweb.co.uk/cert.zip).
Download the file, and import it:

————— BEGIN CERTIFICATE-———-

M1 1DVZCCAWGgAW I BAg I KT39uTWAAAABHCDANBgkghk i GOWOBAQUFADBgMQswCQYD
VQQGEWJHQ jERMABGALUEChMIQXNJZXJ0aWEXJ JAKBgNVBASTHUNSYXNz IDEgQ2Vy
dGImaWNhdGUgQXV0aG9yaXR5MRYwWFAYDVQQDEwW1Bc2NIcnRpYSBDQSAXMBAXDTA3
MDEXMT lwMzAyN10XDTA4MDEXMT IwWNDAyN1owgZ8xJ jAkBgkghk 1 GOWOBCQEWF3cu
YnVjaGFuYW5AbmFwaWVyLmF jLnVrMQswCQYDVQQGEwWJIVSZEQMA4GALUECBMHTGO0
aGIhbj ESMBAGALUEBXMIRWRpbmJ1cmdoMRowGAYDVQQKEXFOYXBpZX1gVW5pdmVy
c210eTELMAKGALUECXMCSVQXGTAXBgNVBAMTEFdpbGxpYWOgQnVjaGFuYW4wgZ8w
DQYJKoZ 1 hveNAQEBBQADGYOAMIGJAOGBALBSY IMulnZwgZ0/C87/evILhUXVw65U
BToYUJFpnp84caJZW8yzRpZ8iUgHFrPro74dv+SecBu7gHlVFo8pMKe+a91 i 6AQ2
Zh9mfFeOndp9ONzoHgt8dEN9hL8ug2bs80ysn7h7ulROE6TYOcSUDWOSCYFKabfdg
OhrC9kyCG59hAgMBAAGJ ggEXM I IBEZAABgNVHQ4EFgQUNWTXEQN j qWEIWWSHXNT/
W3SbhGkwYwYDVRO j BFwwWoAU IP5Zh0V700k6CorvRMWB9 1 FVkBmhP6Q9MDsxCzAJ

30 Security and Forensic Computing

BgNVBAYTAKdCMREWDWYDVQQKEwWhBc2N 1 cnRpYTEZMBCGALUEAXMQQXN jZXJ0aWEg
Um9vdCBDQY IBDTBNBgNVHRS8ER j BEMEKgQKA+h j xodHRwO 1 8vd3d3LmFzY2VydGlh
LmNvbSOPbmxpbmVDQS9jcmxzLOFzY2VydGIhQOEXL2NSYXNzMS5 jcmwwPgY IKwYB
BQUHAQEEM jAWMC4GCCsGAQUFBzACh 1 JodHRwWO 18vb2NzcC5nbG9i1 YWx0cnVzdGZp
bmRIci5jb20vMAOGCSqGS Ib3DQEBBQUAAOEACB/Fg47QYKOU91aiG95mSKuCd9ND
MERU3MKKS lwy+Sx4L it kwJEAOD2/8WcYL5LQ7q6y4tnRKQQBXQ1IMVWFFGew==

————— END CERTIFICATE

4.10.9

Determine the following:

Issued to:

Issued by:

Date of issue:

Signature algorithm:

Public-key type:

Subject:

Access the following e-commerce sites, and get to a place which produces an
HTTPS connection (such as to purchase something or with a login). Deter-
mine the details of their certificates (the first one has already been completed):

Site Issued to: Issued by: | Date of is- | Signature Public key
sue/expiry | algorithm:

amazon.co.uk | amagon.co.uk | Verisignv | 23/01/08 | SHAIRSA | RSA
to- (1024
22/01/09 bits)

amazon.com

napier.ac.uk

ebay.com

maplin.co.uk

paypal.com

4.12

Software Tutorial

4111 Implement a program for the MD5, SHA, SHA (256-bit), SHA (384-bit),
SHA (512-bit) and complete the following table (with just the first five hex
characters):

Text MD5 SHA SHA (256) | SHA (384) | SHA (512)

apple

Apple

apples

This is it.

This is it

W.Buchanan 31

How many characters does each of the types have?

An outline of the code is:

using System;

using XCrypt; // Program uses XCrypt library from
//http://www.codeproject.com/csharp/xcrypt.asp
namespace Hash

class Hash

static void Main(string[] args)

XCryptEngine xe = new XCryptEngine();
xe. InitializeEngine(XCryptEngine.AlgorithmType_MD5) ;

// xe. InitializeEngine(XCryptEngine.AlgorithmType.SHA);

// xe. InitializeEngine(XCryptEngine.AlgorithmType.SHA256) ;
// xe. InitializeEngine(XCryptEngine.AlgorithmType.SHA384);
// xe. InitializeEngine(XCryptEngine.AlgorithmType.SHA512);

Console.WriteLine("Enter string to hash:™);
string inText = Console.ReadLine();

string hashText = xe.Encrypt(inText);

Console._WriteLine("Input: {O}\r\nHash: {1}, inText,hashText);
Console.ReadLine();

Web link: http://buchananweb.co.uk/srcSecurity/tut5_1.zip

4.11.2

An alternative approach is to use the standard .NET classes for encryption.
The following shows an example.

using System;

using System.Collections.Generic;
using System._Text;

using System.Security.Cryptography;

namespace ConsoleApplicationl

class Hash

static void Main(string[] args)

Console.Write(""Enter a message: ');

string message= Console_.ReadLine();

System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding();
MD5 md5 = new MD5CryptoServiceProvider();

SHA1 shal = new SHA1CryptoServiceProvider();

byte[] messageBytes = encoding.GetBytes(message);

byte[] hashmessage = md5.ComputeHash(messageBytes);

string stringMD5 = ByteToString(hashmessage);

hashmessage = shal.ComputeHash(messageBytes);

string stringSHA1 = ByteToString(hashmessage);
Console.WriteLine("'MD5: {O}\r\nSHA-1: {1}', stringMD5, stringSHAl);
Console.ReadLine();

}
public static string ByteToString(byte[] buff)
{

string sbinary = """

for (int i = 0; i < buff.Length; i++)
{

sbinary += buff[i].ToString("'X2"); // hex format
b5

32 Security and Forensic Computing

return (sbinary);

}
}

This gives a sample run of:

Enter a message: hello
MD5: 5D41402ABC4B2A76B9719D911017C592
SHA-1: AAF4C61DDCC5E8A2DABEDEOF3B482CD9AEA9434D

Web link: http://buchananweb.co.uk/hash.zip

Run the program, and prove its output. Next add 256-bit, 386-bit and 512-bit, using;

SHA256Managed sha256
SHA384Managed sha384
SHA512Managed shab512

new SHA256Managed();
new SHA384Managed();
new SHA512Managed();

Thus show that that the SHA values for “hello” is:

SHA-256: 2CF24DBA5FBOA30E26E83B2AC5B9E29E1..2938B9824
SHA-384: 59E1748777448C69DEG6B800D7A33BBFB9..DE828684F
SHA-512: 9B71D224BD62F3785D96D46AD3EA3D733..3BCDEC0O43

411.2 Export a certificate from your system, and update the program in Section
4.6 so that it displays the expiration date, the format, and the hash code,
such as:

Serial Number: CODD5E19983C6F575EFE454E7E66AD02

Effective Date: 08/11/1994 16:00:00

Expiration Date: 07/01/2010 15:59:59

Name: C=US, O="RSA Data Security, Inc.', OU=Secure Server Certification Authoriy
Public key:
308185027E0092CE7AC1AEB33E5AAA898357AC2501760CADAESE2C37CEEB357864503E5844051C9BF8
FO8E28A8208D216863755E9B12102AD7668819A05A24BC94B256622566C88078F781596D8407657013
71763E9B774CE35089569848B91DA7291A132E4A11599C1E15D549542C7336982B197399C6D706748E
5DD2DD6C81E7B0203010001

Public key algorithm: 1.2.840.113549.1.1.1

Issuer: C=US, O="RSA Data Security, Inc.', OU=Secure Server Certification Authoity
Hash code: 1147389233

Format: X509

Web link: http://buchananweb.co.uk/srcSecurity/tut5_2.zip

4113 For SHA1 HMAC, in Section 5.7, prove that the HMAC signature for a key
of “fred” and a key of “apple” is:

bfca635df0a2faf671d14120a56010a543384818
4114 Modify the program in Section 5.7 so that it accepts the message and key
from the command prompt, and shows the resultant HMAC SHA-1 code,

such as:

Enter message: This is a message

W.Buchanan 33

Enter key: fred
HMAC-SHA-1 signature: 19DCA8DA4499F49A8E1940FF7A6A937281369DBC

Thus show that the key of “fred” produces a different output that “Fred.

4115 The following are an HMAC MD5 and an HMAC SHA-1 signature. Show
that the MDS5 signature has 128 bits, and that the SHA one has 160 bits.

HMAC MDS5 signature: 7¢187710d7cd3c73c0135b1d34617d46
HMAC-SHA-1 signature: bfca635df0a2faf671d14120a56010a543384818

411.6 A message of (ignore the inverted commas as this is not part of the mes-
sage):

| “This is the end of the world, do not panic!”

was sent and the HMAC result was:

7BF135C0B795DB32E7E8533012E831C32C058871

Which is the following is the secret key (use your own code or use
http://buchanaweb.co.uk/hmac.aspx):

A bert
B berty
C fred
D freddy

411.7 The code in the following has only HMAC-MD5 and HMAC-SHA1. Update
it with HMAC-SHA256 (HMACSHA256), HMAC-SHA-384 (HMACSHA384),
HMAC-SHA-512 (HMACSHA512), and HMACRIPEMD160 (HMACRIPEMD160):

http:// buchananweb.co.uk/hmac2.zip

4.13 On-line Exercises

The on-line exercise for this chapter are at:

http://buchananweb.co.uk/auth.html

4.14 Web Page Exercises

Implement following Web pages using Visual Studio:
4.13.1 http://buchananweb.co.uk/security03.aspx [MD5/SHA-1]

4.13.2 http://buchananweb.co.uk/security03a.aspx [MD5/SHA-1 to Base-64]
4.13.3 http://buchananweb.co.uk/security03b.aspx [MD5/SHA-1 with salt]

34 Security and Forensic Computing

4.13.3 http://buchananweb.co.uk/security0l.aspx [HMAC]

4.15 NetworkSims exercises

The additional material is at:

http://www .asecuritysite.com/security/information/chapter04

4.16 Reference

[1] This code is based around the Xcrypt libraries provided at
http://www.codeproject.com/csharp/xcrypt.asp.

W.Buchanan 35

