Lab 2.2: Diffie-Hellman, Public Key and Private Key

You will be allocated an instance of the Cloud.

1 Diffie-Hellman

NT-	Description	D14
INO	Description	Result
1	Bob and Alice have agreed on the values:	Now calculate (using the Windows calculator):
	G=2879, N= 9929	Bob's A value (G ^x mod N):
	Bob Select x=6, Alice selects y=9	Alice's B value (G ^Y mod N):
2	Now they exchange the values. Next calculate the shared key:	Bob's value ($B^x \mod N$):
		Alice's value (A ^Y mod N):
		Do they match? [Yes] [No]
3	If you are in the lab, select someone to share a value with. Next agree on two numbers (G and N)	Numbers for G and N:
		Your x value:
	You should generate a random number, and so should they. Do not tell them what your random number is. Next calculate your A value, and get them to do the same.	Your A value:
	Next exchange values	The B value you received:
		Shared key:

	Do they match: [Yes] [No]

B Private Key

Download openssl from the following link and open-up a console window.

http://asecuritysite.com/openssl.zip

No	Description	Result
1	Use:	Outline five encryption methods that are supported:
	openssl list-cipher-commands	
	openssl version	Outline the version of OpenSSL:
2	Using openssl and the command in the form:	Check if the following are prime numbers:
	openssl prime -hex 1111	42 [Yes][No] 1421 [Yes][No]
2	Now create a file named myfile.txt (either use Notepad or another editor).	Use following command to view the output file:
	Next encrypt with aes-256-cbc	type encrypted.bin
	openssl enc -aes-256-cbc -in myfile.txt -out encrypted.bin	Is it easy to write out or transmit the output: [Yes][No]
	and enter your password.	

3	Now repeat the previous command and add the –base64 option.	Use following command to view the output file:
	openssl enc -aes-256-cbc -in myfile.txt -out encrypted.bin - base64	type encrypted.bin
		Is it easy to write out or transmit the output: [Yes][No]
4	Now Repeat the previous command and observe the encrypted output.	Has the output changed? [Yes][No]
	openssl enc -aes-256-cbc -in myfile.txt -out encrypted.bin - base64	Why has it changed?
5	Now let's decrypt the encrypted file with the correct format:	Has the output been decrypted correctly?
	openssl enc -d -aes-256-cbc -in encrypted.bin -pass pass: <i>napier</i> -base64	What happens when you use the wrong password?
6	If you are working in the lab, now give you private key to your neighbour, and get them to encrypt a secret message for you.	Did you manage to decrypt their message? [Yes][No]
7	Now encrypt a file with Blowfish and see if you can decrypt it.	Did you manage to decrypt the file? [Yes][No]
8	Now encrypt a file with 3DES and see if you can decrypt it.	Did you manage to decrypt the file? [Yes][No]
9	Now encrypt a file with RC2 and see if you can decrypt it.	Did you manage to decrypt the file? [Yes][No]

C Public Key

Download openssl and open-up a console window.

No	Description	Result
1	First we need to generate a key pair with:	What is the type of public key method used:
	openssl genrsa -out private.pem 1024	How long is the default key:
	This file contains both the public and the private key.	How long did it take to generate a 1,024 bit key?
		Use the following command to view the keys:
		Type key.pem
2	Use following command to view the output file: type private.pem	What can be observed at the start and end of the file:
3	Next we view the RSA key pair: openssl rsa -in private.pem -text -noout	Which are the attributes of the key shown:
		Which number format is used to display the information on the attributes:
		What does the –noout option do?

4	Let's now secure the encrypted key with 3-DES: openssl rsa -in private.pem -des3 -out key3des.pem	
4	Next we will export the public key: openssl rsa -in private.pem -out public.pem -outform PEM -pubout	View the output key. What does the header and footer of the file identify?
5	Now we will encrypt with our private key: openssl rsautl -encrypt -inkey public.pem -pubin -in myfile.txt - out file.bin	
6	And then decrypt with our public key: openssl rsautl -decrypt -inkey private.pem -in file.bin -out decrypted.txt	What are the contents of decrypted.txt
7	If you are working in the lab, now give you public key to your neighbour, and get them to encrypt a secret message for you.	Did you manage to decrypt their message? [Yes][No]

D Storing keys

We have stored our keys on a key ring file (PEM). Normally we would use a digital certificate to distribute our public key. In this part of the tutorial we will create a crt digital certificate file.

No	Description	Result
1	First download a conf file which will define the defaults for our digital certificate:	What is the type of public key method used:
	http://asecuritysite.com/openssl.conf	View the certificate file and determine:
	Store this in your openssl folder. Next create the crt file with the following:	The size of the public key:
	openssl req -new -key private.pem -out cert.csr -config openssl.conf	The encryption method:
	openssl x509 -req -in cert.csr -signkey private.pem -out server.crt	

E Test

Now take the test at:

http://asecuritysite.com/tests/tests?sortBy=crypto02