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Lab 2.6 Fundamentals (Primes, GCD, 
Random Numbers and Exponentiation) 

Many of the key concepts in cryptography are based on number theory which is the study of 

integers, with a special focus on divisibility. The main classifications for numbers are integers, 

rational numbers, real numbers and complex numbers. In maths we define these as:  

 

 Integers can be positive or negative numbers and have no fractional part. They are 

represented with the ℤ symbol {…-2, -1, 0, +1, +2,…}.   
 Rational numbers are fractions (ℚ).  
 Real numbers (ℜ) include both integers and rational numbers, and any other number 

that can be used in a comparison.  
 Prime numbers (ℙ) represent the integers which can only be divisible by itself and 

unity. 
 Natural numbers (ℕ) represent positive numbers which are integers {1,2…} 

A Prime number test 

A prime number is a value which only has factors of 1 and itself. Prime numbers are used fairly 

extensively in cryptography, as computers struggle to factorize them when they are multiplied 

together.  The simplest test for a prime number is to divide the value from all the integers from 

2 to the value divided by 2. If any of the results leaves no remainder, the value is a prime, 

otherwise it is composite. We can obviously improve on this by getting rid of even numbers 

which are greater than 2, and also that the highest value to be tested is the square root of the 

value.  

 

So if n = 37, then our maximum value will be n , which, when rounded down is 6. So we can 

try: 2, 3, and 5, which of none of these divide exactly into 37, so it is a prime number. Now 

let’s try 55, we will then be 2, 3, 5 and 7. In this case 5 does divide exactly in 55, so the value 

is not prime. 

 

Another improvement we can make is that prime numbers (apart from 2 and 3) fit into the 

equation of: 

 

 6k ± 1 

 

where k=0 gives 0 and 1, k=1 gives 5 and 7, k=2 gives 11 and 13, k=3 gives 17 and 19, and 

so on. Thus we can test if we can divide by 2 and then by 3, and then check all the numbers 

of 6k ± 1 up to n . 

 

 Web link (Prime Numbers): http://asecuritysite.com/encryption/isprime 

 

No Description Result 

1 Using the equation of 6k ± 1. Determine the 

prime numbers up to 100: 

 

Prime numbers: 
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2 Implement a Python program which will 

calculate the prime numbers up to 1000: 

 

Define the highest prime number 

generated: 

 

 

A prime sieve creates all the prime numbers up to a given limit. It progressively removes 

composite numbers until it only has prime numbers left, and it is the most efficient way to 

generate a range of prime numbers. The following provides a fast method to determine the 

prime numbers up to a give value (test): 

 
import sys 
 
test=1000 
 
if (len(sys.argv)>1): 
 test=int(sys.argv[1]) 
 
def sieve_for_primes_to(n): 
    size = n//2 
    sieve = [1]*size 
    limit = int(n**0.5) 
    for i in range(1,limit): 
        if sieve[i]: 
            val = 2*i+1 
            tmp = ((size-1) - i)//val  
            sieve[i+val::val] = [0]*tmp 
    return [2] + [i*2+1 for i, v in enumerate(sieve) if v and i>0] 
  
 
print sieve_for_primes_to(test) 

 

No Description Result 

1 Implement the Python code given above and 

determine the highest prime number possible 

in the following ranges: 

 

Up to 100: 

 

Up to 1,000: 

 

Up to 5,000: 

 

Up to 10,000: 

 

 

The Miller-Rabin Test for Primes is an efficient method in testing for a prime number. 

Access the following page, and download the Python script.  

 

http://asecuritysite.com/encryption/rabin 

 

Using this determine the following: 
 

 

No Description Result 

1 Which of the following numbers are prime 

numbers: 

 

Is 5 prime? Yes/No 

 

Is 7919 prime? Yes/No 

 

Is 858,599,509 prime? Yes/No 

 

Is 982,451,653 prime? Yes/No 

 

Is 982,451,652 prime? Yes/No 
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B GCD 

GCD is known as the greatest common divisor, or greatest common factor (gcf), and is the 

largest positive integer that divides into two numbers without a remain-der. For example, the 

GCD of 9 and 15 is 3. It is used many encryption algorithms, and a sample algorithm to 

determine the GCD of two values (a and b) is given on: 

 

http://asecuritysite.com/encryption/gcd 

 

No Description Result 

1 Write a Python program to determine the 

GCD for the following: 

 

4105 and 10:  

 

4539 and 6: 

 

2 Two numbers are co-prime if they do not 

share co-factors, apart from 1, which is 

gcd(a,b)=1. 

 

Determine if the following values are co-

prime: 

 

5435 and 634: Yes/No 

  

5432 and 634: Yes/No 

 

 

C Modulus and Exponentiation 

The mod operator results in the remainder of an integer divide. For example 31 divided by 8 

is 3 remainder 7, thus 31 mod 8 equals 7. Often in cryptography the mod operation uses a 

prime number, such as: 

 

Result = valuex mod (prime number) 

 

For example, if we have a prime number of 269, and a value of 8 with an x value of 5, the 

result of this operation will be: 

 

Result = 85 mod 269 = 219 

 

With prime numbers, if we know the result, it is difficult to find the value of x even though 

we have the other values, as many values of x can produce the same result. It is this feature 

which makes it difficult to determine a secret value (in this case the secret is x). 

 

Exponentiation ciphers use a form of: 

 

C = Me mod p 

 

to encrypt and decrypt a message (M) using a key of e and a prime number p.  

 

No Description Result 

1 What is the result of the following: 

 

 

 

813 mod 271: 

 

1223 mod 973: 
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2 Implement a Python program which will 

determine the result of: 

 

Me mod p 

 

The program should check that p is a prime 

number. 

Is the result of 85 mod 269 equal to 

219? 

 

Yes/No 

 

 

 

3 Now provide the following: 

(a) message = 5, e=5, p = 53. Ans: 51 

(b) message = 4, e=11, p = 79. Ans: 36 

(c) message = 101, e=7, p = 293. Ans: 176 

 

An outline of the Python code is: 

 
message = raw_input('Enter message: ') 

e =  raw_input('Enter exponent: ')  

p = raw_input('Enter prime ') 

 

cipher = (int(message) ** int(e)) % int(p) 

print cipher 

Have you proven the answers 

 

(a) Yes/No 

(b) Yes/No 

(c) Yes/No 

 

D Random numbers 

Within cryptography random numbers are used to generate things like encryption keys. If the 

generation of these keys could be predicted in some way, it may be possible to guess it. The 

two main types of random number generators are: 

 

 Pseudo-Random Number Generators (PRNGs).  Repeats after a given time.  Fast. They 

are also deterministic and periodic, so that the random number generation will eventually 

repeat. 

 True Random Number Generators (TRNGs). This method is a true random number such 

as for keystroke analysis.  It is generally slow, but is non-deterministic and aperiodic. 

 

Normally simulation and modelling use PRNG, so that the values generated can be repeated 

each time, while cryptography, lotteries, gambling and games use TRNG, as each value which 

is selected at random should not repeat or be predictable. In the generation of encryption keys 

for public key encryption, a user is typically asked to generate some random activity with their 

mouse pointer. The random number is then generated on this activity. 

 

Computer programs often struggle to generate TRNG, and hardware generators are sometimes 

used. One method is to generate a random number based on low-level, statistically random 

"noise" signals. This includes things like thermal noise, and a photoelectric effect. 

 

 Web link (Random number): http://asecuritysite.com/encryption/random 

Linear Congruential Random Numbers 

One method of creating a simple random number generator is to use a sequence generator of 

the form: 

 

 mcXaX ii mod)(1   
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Where a, c and m are integers, and where X0 is the seed value of the series. 

 

If we take the values of a=21, X0=35, c=31 and m=100 we get a series of: 

 

66 17 88 79 90 21 72 43 34 45 76 27 98 89 0 31 82 53 

 

Using this example we get: 

 

(21x35+31) mod 100 gives 66 

(21x66+31) mod 100 gives 17 

(21x17+31) mod 100 gives 88 

and so on. 

 

 Web link (Linear congruential): http://asecuritysite.com/encryption/linear 

 

No Description Result 

1 Implement the Python code given above. 

 

Using: a=21, seed=35, c=31, and m=100, 

prove that the sequence gives 66 17 88 79 90   

 

Does it generate this sequence: 

 

Yes/No 

2 Determine the sequence for: 

 

a=22, seed=35, c=31, and m=100.  

 

First four numbers of sequence: 

 

 

 

3 Determine the sequence for: 

 

a=954,365,343, seed=436,241, 

c=55,119,927, and m=1,000,000. 

 

First four numbers of sequence: 

 

4 Determine the sequence for: 

 

a=2,175,143, seed=3553, c=10,653, and 

m=1,000,000.  
 

First four numbers of sequence: 
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