
1

Lab 2.6 Fundamentals (Primes, GCD,
Random Numbers and Exponentiation)

Many of the key concepts in cryptography are based on number theory which is the study of

integers, with a special focus on divisibility. The main classifications for numbers are integers,

rational numbers, real numbers and complex numbers. In maths we define these as:

 Integers can be positive or negative numbers and have no fractional part. They are

represented with the ℤ symbol {…-2, -1, 0, +1, +2,…}.
 Rational numbers are fractions (ℚ).
 Real numbers (ℜ) include both integers and rational numbers, and any other number

that can be used in a comparison.
 Prime numbers (ℙ) represent the integers which can only be divisible by itself and

unity.
 Natural numbers (ℕ) represent positive numbers which are integers {1,2…}

A Prime number test

A prime number is a value which only has factors of 1 and itself. Prime numbers are used fairly

extensively in cryptography, as computers struggle to factorize them when they are multiplied

together. The simplest test for a prime number is to divide the value from all the integers from

2 to the value divided by 2. If any of the results leaves no remainder, the value is a prime,

otherwise it is composite. We can obviously improve on this by getting rid of even numbers

which are greater than 2, and also that the highest value to be tested is the square root of the

value.

So if n = 37, then our maximum value will be n , which, when rounded down is 6. So we can

try: 2, 3, and 5, which of none of these divide exactly into 37, so it is a prime number. Now

let’s try 55, we will then be 2, 3, 5 and 7. In this case 5 does divide exactly in 55, so the value

is not prime.

Another improvement we can make is that prime numbers (apart from 2 and 3) fit into the

equation of:

 6k ± 1

where k=0 gives 0 and 1, k=1 gives 5 and 7, k=2 gives 11 and 13, k=3 gives 17 and 19, and

so on. Thus we can test if we can divide by 2 and then by 3, and then check all the numbers

of 6k ± 1 up to n .

 Web link (Prime Numbers): http://asecuritysite.com/encryption/isprime

No Description Result

1 Using the equation of 6k ± 1. Determine the

prime numbers up to 100:

Prime numbers:

http://asecuritysite.com/encryption/isprime

2

2 Implement a Python program which will

calculate the prime numbers up to 1000:

Define the highest prime number

generated:

A prime sieve creates all the prime numbers up to a given limit. It progressively removes

composite numbers until it only has prime numbers left, and it is the most efficient way to

generate a range of prime numbers. The following provides a fast method to determine the

prime numbers up to a give value (test):

import sys

test=1000

if (len(sys.argv)>1):
 test=int(sys.argv[1])

def sieve_for_primes_to(n):
 size = n//2
 sieve = [1]*size
 limit = int(n**0.5)
 for i in range(1,limit):
 if sieve[i]:
 val = 2*i+1
 tmp = ((size-1) - i)//val
 sieve[i+val::val] = [0]*tmp
 return [2] + [i*2+1 for i, v in enumerate(sieve) if v and i>0]

print sieve_for_primes_to(test)

No Description Result

1 Implement the Python code given above and

determine the highest prime number possible

in the following ranges:

Up to 100:

Up to 1,000:

Up to 5,000:

Up to 10,000:

The Miller-Rabin Test for Primes is an efficient method in testing for a prime number.

Access the following page, and download the Python script.

http://asecuritysite.com/encryption/rabin

Using this determine the following:

No Description Result

1 Which of the following numbers are prime

numbers:

Is 5 prime? Yes/No

Is 7919 prime? Yes/No

Is 858,599,509 prime? Yes/No

Is 982,451,653 prime? Yes/No

Is 982,451,652 prime? Yes/No

http://asecuritysite.com/encryption/rabin

3

B GCD

GCD is known as the greatest common divisor, or greatest common factor (gcf), and is the

largest positive integer that divides into two numbers without a remain-der. For example, the

GCD of 9 and 15 is 3. It is used many encryption algorithms, and a sample algorithm to

determine the GCD of two values (a and b) is given on:

http://asecuritysite.com/encryption/gcd

No Description Result

1 Write a Python program to determine the

GCD for the following:

4105 and 10:

4539 and 6:

2 Two numbers are co-prime if they do not

share co-factors, apart from 1, which is

gcd(a,b)=1.

Determine if the following values are co-

prime:

5435 and 634: Yes/No

5432 and 634: Yes/No

C Modulus and Exponentiation

The mod operator results in the remainder of an integer divide. For example 31 divided by 8

is 3 remainder 7, thus 31 mod 8 equals 7. Often in cryptography the mod operation uses a

prime number, such as:

Result = valuex mod (prime number)

For example, if we have a prime number of 269, and a value of 8 with an x value of 5, the

result of this operation will be:

Result = 85 mod 269 = 219

With prime numbers, if we know the result, it is difficult to find the value of x even though

we have the other values, as many values of x can produce the same result. It is this feature

which makes it difficult to determine a secret value (in this case the secret is x).

Exponentiation ciphers use a form of:

C = Me mod p

to encrypt and decrypt a message (M) using a key of e and a prime number p.

No Description Result

1 What is the result of the following:

813 mod 271:

1223 mod 973:

http://asecuritysite.com/encryption/gcd

4

2 Implement a Python program which will

determine the result of:

Me mod p

The program should check that p is a prime

number.

Is the result of 85 mod 269 equal to

219?

Yes/No

3 Now provide the following:

(a) message = 5, e=5, p = 53. Ans: 51

(b) message = 4, e=11, p = 79. Ans: 36

(c) message = 101, e=7, p = 293. Ans: 176

An outline of the Python code is:

message = raw_input('Enter message: ')

e = raw_input('Enter exponent: ')

p = raw_input('Enter prime ')

cipher = (int(message) ** int(e)) % int(p)

print cipher

Have you proven the answers

(a) Yes/No

(b) Yes/No

(c) Yes/No

D Random numbers

Within cryptography random numbers are used to generate things like encryption keys. If the

generation of these keys could be predicted in some way, it may be possible to guess it. The

two main types of random number generators are:

 Pseudo-Random Number Generators (PRNGs). Repeats after a given time. Fast. They

are also deterministic and periodic, so that the random number generation will eventually

repeat.

 True Random Number Generators (TRNGs). This method is a true random number such

as for keystroke analysis. It is generally slow, but is non-deterministic and aperiodic.

Normally simulation and modelling use PRNG, so that the values generated can be repeated

each time, while cryptography, lotteries, gambling and games use TRNG, as each value which

is selected at random should not repeat or be predictable. In the generation of encryption keys

for public key encryption, a user is typically asked to generate some random activity with their

mouse pointer. The random number is then generated on this activity.

Computer programs often struggle to generate TRNG, and hardware generators are sometimes

used. One method is to generate a random number based on low-level, statistically random

"noise" signals. This includes things like thermal noise, and a photoelectric effect.

 Web link (Random number): http://asecuritysite.com/encryption/random

Linear Congruential Random Numbers

One method of creating a simple random number generator is to use a sequence generator of

the form:

 mcXaX ii mod)(1

http://asecuritysite.com/encryption/random

5

Where a, c and m are integers, and where X0 is the seed value of the series.

If we take the values of a=21, X0=35, c=31 and m=100 we get a series of:

66 17 88 79 90 21 72 43 34 45 76 27 98 89 0 31 82 53

Using this example we get:

(21x35+31) mod 100 gives 66

(21x66+31) mod 100 gives 17

(21x17+31) mod 100 gives 88

and so on.

 Web link (Linear congruential): http://asecuritysite.com/encryption/linear

No Description Result

1 Implement the Python code given above.

Using: a=21, seed=35, c=31, and m=100,

prove that the sequence gives 66 17 88 79 90

Does it generate this sequence:

Yes/No

2 Determine the sequence for:

a=22, seed=35, c=31, and m=100.

First four numbers of sequence:

3 Determine the sequence for:

a=954,365,343, seed=436,241,

c=55,119,927, and m=1,000,000.

First four numbers of sequence:

4 Determine the sequence for:

a=2,175,143, seed=3553, c=10,653, and

m=1,000,000.

First four numbers of sequence:

http://asecuritysite.com/encryption/linear

