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Abstract

We propose an efficient digital signature scheme, which
is proved secure under the strong RSA assumption, and
can operate in an online/offline manner, doing most of its
work in the offline precomputation phase. The online phase,
which is performed after the message to be signed is known,
is very efficient, requiring only a single modular multiplica-
tion. Online/offline signatures are useful in settings in which
signatures need to be produced quickly either when there is
a large volume of requests or if the device performing the
signature is not computationally powerful (such as a mobile
device). Our scheme can be seen as an online/offline exten-
sion of the traditional signature scheme of Gennaro, Halevi,
and Rabin (the GHR signature scheme) which did not oper-
ate in this two-phase manner, and required significant com-
putation after the message was known. In contrast to an-
other online/offline extension of the GHR scheme, our new
scheme avoids the use of trapdoor hash/commitment prim-
itives, allowing the use of a traditional hash function, im-
proving the efficiency of the offline phase of the algorithm.

Keywords: Digital Signature, Strong RSA Assumption,
Random Oracle, Online/Offline Signing, Suitable Hash
Function.

1. Introduction

Consider a typical scenario in a distributed system: A
server experiences “bursty” traffic so that at times it needs
to authenticate itself simultaneously to a large number
of client applications running on remote client machines,
while at other times there are many idle CPU cycles. For
example, this server could be a stock broker’s server and
the client wants to confirm that the remote server is not a
spoofed server. The standard way of achieving this goal is
with a digital signature scheme: the client generates a ran-

dom message, and asks the server to produce a digital sig-
nature on this message using the server’s private key. Then
the client can authenticate the server using the server’s pub-
lic key to check if the signature is valid on its random chal-
lenge message. On a stock broker’s server there would be a
steady stream of requests during the trading day, but there
might be times — such as immediately after financial up-
dates or news releases — when the number of requests is
extraordinarily high. And after hours there is significantly
less traffic. Since cryptographic computation normally is
time consuming, with a high volume of simultaneous au-
thentication requests the server could be overwhelmed, and
not be able to produce signatures in an acceptable amount
of time.

Consider also a different scenario in which a mobile de-
vice with limited computing capability needs to authenti-
cate itself before accessing certain network resources. A
remote server may challenge a device with a random mes-
sage, asking the device to produce a signature for its mes-
sage. Since a mobile device has limited computing capa-
bility, it might have some difficulty generating the required
signature quickly.

In the above two scenarios, it is highly desirable that
a mechanism should be deployed to expedite the authen-
tication process. Such a mechanism does exist for digital
signature schemes, and is known as online/offline signing.
In online/offline signing, a majority of the computation re-
lated to signature generation can be completed even before
a message appears. Therefore, most computation can be
done offline during idle time. When a message comes, only
a very simple calculation is needed to complete signature
generation. This mechanism is very attractive for the above
scenarios. We will present such an online/offline digital sig-
nature scheme in this paper.

1.1. Background

The digital signature concept is a fundamental crypto-
graphic primitive in modern cryptography. In such schemes,
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a user prepares a keypair which includes a signing key and
a verification key. The signing key is kept secret by the user
while the verification key is public for potential verifiers.
The user generates a string by signing a message using his
signing key. This string is called the user’s signature on this
particular message. Later a verifier can check the validity of
a signature on a message using the user’s verification key.

The idea of digital signatures was first proposed by Diffie
and Hellman [5]. Since then, numerous constructions have
been proposed in the literature based on different secu-
rity assumptions. Many schemes are based on the well-
known RSA assumption and a variant known as the strong
RSA assumption, including PSS [1] and the Cramer-Shoup
scheme [4]. Other schemes are based on variants of the dis-
crete logarithm or computational/decisional Diffie-Hellman
assumption, including Schnorr signatures [12], ElGamal
signatures [6], and many others.

As a fundamental cryptographic primitive, it is impor-
tant to clarify the exact requirements for a secure digital
signature scheme. In 1988, Goldwasser et al. defined a
security notion for signature schemes which is called ex-
istential unforgeability under adaptive chosen message at-
tacks [9]. Since then, this notion has been widely used to
judge whether a digital signature scheme is strong enough
to be deployed in a real application. Many digital signature
schemes have been proved secure under this requirement
in the random oracle model (e.g., Schnorr, ElGamal, PSS).
The random oracle model abstracts a cryptographic hash
function as a random function. Canetti et al. constructed
a scheme that can be proved secure in the random oracle
model, while any real implementation will result in an in-
secure construction [3]. Therefore, security proofs in the
random oracle model do not necessarily imply security in
the standard model, so a proof of security in the random or-
acle model can only be treated as a heuristic argument that
a scheme is secure.

In 1999, Gennaro, Halevi and Rabin proposed a practical
digital signature scheme in the “hash-and-sign” paradigm
that they proved secure under adaptive chosen message at-
tacks without requiring random oracles [8]. In this paper,
we refer to their scheme as the GHR scheme. The GHR
scheme requires a hash function that meets certain require-
ments, but these requirements are much more realistic than
assuming a random oracle. While meeting these require-
ments in a provable way leads to some complex construc-
tions, it is quite reasonable to think that widely-used effi-
cient hash functions (like SHA-1 or SHA-256) satisfy the
necessary requirements. While formally proving this is be-
yond current cryptographic understanding, the use of these
standard hash functions in GHR gives a very efficient algo-
rithm.

The notion of online/offline signatures was first intro-
duced by Even et al. in 1989 [7], and they proposed a

generic method to convert any signature scheme into an
online/offline one. In fact, many signature schemes based
on the discrete logarithm assumption naturally have on-
line/offline versions without any further effort, while signa-
ture schemes based on the strong RSA assumption generally
do not have such characteristic. However, the method pro-
posed by Even et al. is not efficient and practical. In 2001,
Shamir and Tauman proposed another generic method to
achieve online/offline signing [13]. Their method is based
on a new type of hash function called a trapdoor hash func-
tion, which is proposed by Krawczyk and Rabin [10], and
allows the use of a “hash-sign-switch” paradigm. This con-
struction was further improved by Kurosawa and Schmidt-
Samoa who weakened the requirements needed for the
cryptographic primitives in the generic online/offline con-
struction [11].

1.2. Our Results

We present a signature scheme that can be viewed as
an online/offline extension of the GHR scheme. As a di-
rect online/offline design, we maintain the nice feature from
GHR that standard efficient hash functions are likely to give
the necessary security. This is in contrast to generic con-
structions such as that of Shamir and Tauman [13] or Kuro-
sawa and Schmidt-Samoa [11] that require trapdoor hash
or trapdoor commitment primitives, which complicate the
scheme by introducing additional sets of keys and requiring
additional complex operations (similar to public key cryp-
tographic operations) for setting up the hash function in the
offline phase. As a consequence, our system is easier to
manage (with fewer keys) and is more efficient in the of-
fline phase.

Our scheme does have two disadvantages, however.
First, while the offline phase is more efficient, the online
phase is slightly slower than the Kurosawa/Schmidt-Samoa
extension, requiring a full modular multiplication as op-
posed to a shift and a modular reduction. Even so, our
online phase is still very efficient (a single modular mul-
tiplication), so we feel this is not a serious issue. Second,
our signature scheme can fail, meaning it produces a sig-
nature that will not be verified. While this is serious, we
prove that this failure happens only with negligible proba-
bility. Many existing systems have the property that security
is weak with negligible probability (for example, finding a
prime factor of an RSA modulus by chance), but are used
and relied upon anyway, and we feel such reasoning ap-
plies to our new scheme as well. We also provide a strong
way to avoid this: when sufficient CPU cycles are avail-
able, a validity test can be performed by the signer which
will allow her to always produce a valid signature. While
this extra step negates some of the efficient online phase
improvements, in a bursty traffic situation as described ear-
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lier it is possible to serve most requests with certainty, and
those during high volume time with a negligible probability
of failure.

The rest of the paper is organized as follows. Section 2
reviews some cryptographic notations and definitions. Our
online/offline signature scheme is introduced in Section 3,
and its security properties in the random oracle model are
discussed in Section 4. In Section 5 we discuss the prop-
erties needed in using a real hash function as opposed to
a random oracle, and discuss the resulting security issues.
Finally, we give the conclusions in Section 6.

2. Preliminaries

This section reviews some notations and definitions
which are used throughout the paper.

Definition 1 (Special RSA Modulus) An RSA modulus
n = pq is called special if p = 2p′ + 1 and q = 2q′ + 1
where p′ and q′ also are prime numbers.

Definition 2 (Quadratic Residue Group QRn) Let Z∗
n be

the multiplicative group modulo n, which contains all pos-
itive integers less than n and relatively prime to n. An ele-
ment x ∈ Z∗

n is called a quadratic residue if there exists an
a ∈ Z∗

n such that a2 ≡ x mod n. The set of all quadratic
residues of Z∗

n forms a cyclic subgroup of Z∗
n, which we de-

note by QRn. If n is the product of two distinct primes, then
|QRn| = 1

4 |Z∗
n|.

A hash function is a function mapping arbitrary strings
of finite length to binary strings of fixed length. For crypto-
graphic purposes, we would like a hash function to satisfy
properties such as strong collision resistance and weak col-
lision resistance. Our scheme uses another property for a
hash function called “division intractability,” which was in-
troduced by Gennaro et al. [8]. Informally, a hash function
is division intractable if it is infeasible to find distinct inputs
for this hash function such that the hash value of one input
divides the product of hash values of all other inputs. This
property is further extended by Gennaro et al. to the notion
of a suitable hash function H, which we outline below —
more detailed discussion of these concepts can be found in
the GHR paper [8].

Definition 3 (Suitable Hash Function) A suitable hash
function has the following properties:

• H is division intractable.

• The distributions h(R; M1), h(R; M2) induced by the
random choice of R, are statistically close, for every
h ∈ H and every two messages M1, M2.

• The strong RSA assumption holds in a model where
there exists an oracle that on input (h, M, e), returns
a random R with h(R; M) = e.

Now we introduce the strongest notion of a secure signa-
ture scheme, existential unforgeability under adaptive cho-
sen message attacks, which was proposed by Goldwasser,
Micali and Rivest [9]. The definition we give here is due to
Gennaro et al. [8].

Definition 4 (Secure Signatures [8]) A signature scheme
S = 〈Gen, Sig, V er〉 is existentially unforgeable under an
adaptive chosen message attack if it is infeasible for a forger
who only knows the public key to produce a valid (message,
signature) pair, even after obtaining polynomially many sig-
natures on messages of its choice from the signer.

Formally, for every probabilistic polynomial time forger
algorithm F , there exists a negligible function negl() such
that

Pr




〈pk, sk〉 ← Gen(1k);
for i = 1 . . . n

Mi ← F(pk, M1, σ1, . . . , Mi−1, σi−1);
σi ← Sig(sk, Mi);
〈M, σ〉 ← F(pk, M1, σ1, . . . , Mn, σn),
M �= Mi for i = 1 . . . n, and
V er(pk, M, σ) = accept.




= negl(k).

3. The Digital Signature Scheme

Table 1 shows our online/offline digital signature
scheme, which includes the system setup, sign algorithm
and verify algorithm. The system is parametrized by secu-
rity parameter λ and a hash function length k, where we
require that k is polynomial in λ, and should be chosen so
that the failure probability in Lemma 5 is acceptably small.
For example, a reasonable system would be produced with
λ = 512 (so the modulus n is 1024 bits) and k = 1024.

The online phase of the sign algorithm includes an op-
tional test step — if time can be taken to perform this step,
the sign algorithm will never fail, but at the cost of a mod-
erately expensive GCD computation. On the other hand, as
we show in Lemma 5, the probability of this test failing is
negligible, so the test can be omitted if a negligible failure
probability is acceptable. If the test is omitted, the online
phase only requires a single modular multiplication.

In a real application, it is desirable to have a pool of
(si, Xi) pairs available when needed. For instance, in the
first scenario in the introduction, the server might need a
large pool to complete a large burst of authentication re-
quests, so b could be large (e.g., over 1000). On the other
hand, for a mobile device, b can be set reasonable small —
a pool size of 5 or less should be enough for most situations.
During idle time, the device produces new pairs to keep the
pool full.
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System Setup — For security parameter λ and hash function length k (see text for requirements)
1. n: Pick two λ-bit safe primes p and q (so that p = 2p′ + 1, and q = 2q′ + 1, where p′ and q′ are also

prime), and let n = pq.

2. g: Select g as a random generator of QRn.

3. H: Choose a division intractable hash functionH : {0, 1}∗ → {0, 1}k.

The public key is (n, g,H), and the private key is (p, q).

Sign Algorithm
Offline Phase: For pool size b, Alice picks b random values si ∈R [0, p′q′), for i = 1, · · · , b. For each si,
Alice computes

Xi = gsi mod n.

Thus, Alice prepares a pool of size b (si, Xi) pairs in idle time.

Online Phase: For a message m, Alice computesH(m), then uses the next unused (si, Xi) pair to compute

r = si ×H(m) mod p′q′.

Optional test step: Test if GCD(H(m), r) ≤ 22
√

k — if so, the signature is ready; otherwise, Alice will
continue by trying other (si, Xi) pairs.

The signature is (Xi, r).

Verify Algorithm
For Alice’s signature (X, r) on message m, Bob verifies that GCD(H(m), r) ≤ 22

√
k, and

XH(m) ≡ gr mod n.

Table 1. Our online/offline signature scheme

4. Security in the Random Oracle Model

The following security proof is derived from the proof
given in the original Gennaro, Halevi, and Rabin paper [8].
The security of our scheme relies on the following security
assumption which is widely accepted in the cryptography
literature. Due to the page limitation, the proofs for lemmas
have been moved to the full version of this paper [14].

Assumption 1 (Strong RSA Assumption) Let n be an
RSA modulus. The Flexible RSA Problem is the problem
of taking a random element u ∈ Z∗

n and finding a pair
(v, e) such that e > 1 and ve = u mod n. The Strong
RSA Assumption says that no probabilistic polynomial time
algorithm can solve the flexible RSA problem with non-
negligible probability.

First, we introduce a lemma due to Camenisch and
Lysyanskaya [2] which will be used for the proof of our
signature scheme.

Lemma 1 Let n be a special RSA modulus. Given values
u, v ∈ QRn and x, y ∈ Z , GCD(x, y) < x such that vx ≡
uy mod n. Values z, w > 1 such that zw ≡ u mod n
can be computed efficiently.

Next, we introduce a lemma which addresses the
smoothness of a random integer. The proof for this lemma
can be found as part of the proof of Lemma 6 in [8].

Lemma 2 Let e be a random k-bit integer. The probability
of e being 22

√
k-smooth (all e’s prime factors are no larger

than 22
√

k) is no larger than 2−2
√

k.

The following lemma is used directly in the security
proof for our digital signature scheme — note that the con-
dition on v is met for sufficiently large k whenever v is poly-
nomial in k.

Lemma 3 Let e1, e2, · · · , ev be random k-bit integers,
where v ≤ 20.5

√
k. Let j be a randomly chosen index from
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[1, v], and define E = (
∏v

i=1 ei)/ej . If rj is an integer

such that GCD(ej , rj) ≤ 22
√

k, then the probability that

ej divides Erj is less than 2−
√

k.

Our security proof uses the standard technique of simu-
lating the signature oracle for a forgery algorithm. Unfor-
tunately, we cannot perfectly simulate the signature oracle,
because the distribution of the r values produced by the sign
algorithm depends on the unknown value p′q′. However, we
can simulate something very close to this distribution — in
the main security theorem we use the following lemma to
show that our “close” distribution is in fact close enough to
establish the security of our signature scheme.

Let PrD(x) denote the probability of x in distribution
D. Then the distance between two distributions D1 and D2

is

dist(D1, D2) =
1
2

∑
x

|PrD1(x)− PrD2 (x)| ,

and note that for any two distributions dist(D1, D2) ≤ 1.
Two distributions D1 and D2 are statistically indistinguish-
able if dist(D1, D2) is negligible.

Lemma 4 Let p′ and q′ be as defined in Table 1, so in par-
ticular p′ and q′ are λ− 1 bit prime numbers. Consider the
following two distributions on pairs (r, e):

• Distribution D1 is obtained by selecting e uniformly
from the set of k-bit integers, and r is computed as
r = s× e mod p′q′, where s is chosen uniformly from
the set {0, · · · , p′q′ − 1}.

• Distribution D2 is obtained by selecting e uniformly
from the set of k-bit integers, and r is uniformly se-
lected from the set {0, · · · , n−1

4 − 1}.
dist(D1, D2) < 2−λ+3, so distributions D1 and D2 are
statistically indistinguishable.

Lemma 5 Let (e, r) be a pair drawn from D1, where k ≥ 4
is polynomial in λ. Then the probability that GCD(e, r) >

22
√

k is at most k

22
√

k
+ ν(k), where ν(k) is negligible in k.

Now we prove our signature scheme is secure under the
strong RSA assumption when the hash function H is re-
placed by a random oracle.

Theorem 1 In the random oracle model, the above signa-
ture scheme is existentially unforgeable under an adaptive
chosen message attack, assuming the strong RSA assump-
tion.

Proof : Let F be a forger algorithm. Under the random ora-
cle model, F always queries the random oracle about a mes-
sage m before it either asks the signature oracle to sign this

message, or outputs (m, x, r) as a potential forgery. Let v
be some polynomial upper bound on the number of queries
that F makes to the random oracle.

We now show an efficient algorithm A, that uses F as
a subroutine, such that if F has probability ε of forging a
signature, then A has probability ε′ ≈ ε/v of solving the
flexible RSA problem.

A is given a special RSA modulus n and a t ∈R QRn,
and its goal is to find a pair (z, e) such that e > 1 and
ze ≡ t mod n.

First, A prepares answers for the random oracle queries
that F will ask by picking v random k-bit integers
e1, · · · , ev and a random j ∈R [1, v]. A is betting on the
chance that F will use its j’th oracle query to generate the
forgery.

Next, A prepares answers for signature queries that F
will ask. A computes E = (

∏v
i=1 ei)/ej . If ej divides

E, then A outputs “failure” and halts. Otherwise, it sets
g = tE mod n, and initializes the forger F , giving it the
public key (n, g).

A then runs the forger algorithm F , answering oracle
queries with the help of a function SAMPLED() which gets
a random sample from some distribution D, which we will
describe at the end of the proof. Specifically, oracle queries
are answered as follows:

• Random oracle queries for m1 . . . mv are answered by
setting h(mi) = ei for each i ∈ [1, v].

• Signature oracle query for message mi, for i �= j, are
answered with (mi, xi, ri) where ri = SAMPLED()
and xi = tEri/ei mod n.

If F queries the signature oracle for message mj , or halts
with an output other than (mj , xj , rj) for which x

ej

j ≡
grj mod n and GCD(ej , rj) ≤ 22

√
k, then A outputs

“failure” and halts. Otherwise we have a valid forgery with

x
ej

j ≡ grj ≡ tErj mod n.

By Lemma 3, ej divides Erj with a negligi-
ble probability, and so with overwhelming probability
GCD(ej , Erj) < ej , and we can apply Lemma 1 to find
values z and e such that ze ≡ t mod n. Therefore, if A
does not output “failure” then with overwhelming probabil-
ity it outputs a valid solution to this instance of the flexible
RSA problem.

To bound the probability that A outputs “failure,” we
need to examine the probability distribution D used in an-
swering queries to the signature oracle. If we could sample
according to distribution D1, as defined in Lemma 4, then
the distribution of signature responses is identical to that
produced by an actual signer, so the probability of generat-
ing a valid forgery for a specific message is ε, and combined
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with the probability that we correctly picked the correct j
for the forgery query the overall success probability is ε/v.
However, we cannot sample from distribution D1 without
knowing the value p′q′, which is not available to us in A’s
simulation of the signature oracle.

Instead, we use distribution D2 from Lemma 4, which
is just the uniform distribution on {0, · · · , n−1

4 − 1} and so
can be efficiently sampled. The success probability of the
forgery algorithm is only changed by a negligible amount,
since we showed in Lemma 4 that these two distributions
are statistically indistinguishable (if the change in success
probability was more than a negligible amount, we could
use this very simulation as a distinguisher between D1 and
D2). In other words, using D2 for our distribution D, the
success probability of the forgery algorithm is at least ε −
η(λ), where η(λ) is some negligible function in λ.

A can also output “failure” if, in selecting the random or-
acle outputs e1, · · · , ev, we have Erj divisible by ej . How-
ever, Lemma 3 established that this is another negligible
probability, and so the overall probability of successfully
solving the flexible RSA problem is ≈ ε/v. ��

5. Replacing the Random Oracle

In this section, we briefly discuss using a real hash func-
tion H instead of a random oracle. As in the GHR algo-
rithm, we don’t need a completely random function for H,
but can instead use a function which satisfies less stringent
requirements and is thus realizable.

Specifically, we require that the hash function be “suit-
able,” according to Definition 3. The salient properties of
the GHR scheme which allow for the use of a suitable hash
function carry over to our modification as well, resulting in
the following theorem.

Theorem 2 IfH is suitable, then the construction from Sec-
tion 3 is existentially unforgeable under an adaptive chosen
message attack, assuming the strong RSA assumption.

Due to the similarity between our scheme and the GHR
scheme, the proof for the above theorem is similar to that
for the GHR scheme [8], and is in the full version of our
paper [14].

6. Conclusions

In this paper we have presented a new efficient digital
signature scheme, which is proved secure under the strong
RSA assumption. Our construction works in a two-phase
offline/online model, so after some offline precomputation
that is independent of the message being signed, the on-
line phase is highly efficient (just a single modular multi-
plication). Furthermore, while other online/offline schemes

require random oracles or complex hash function construc-
tions such as trapdoor hash functions, our scheme is secure
under the less demanding requirement of a “suitable hash
function” (as defined by Gennaro, Halevi, and Rabin [8]).
This both simplifies the overall system and makes the of-
fline phase more efficient, while the online phase is still very
efficient.
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