

Introduction to Data Science

Outline

- Combinations/Permutations.
- Sets.
- Probabilities.
- Bayes.
- Correlations.
- Distributions.

Combinations/ Permutations

Combinations/ Permutations

[UK, France, Germany, UK, France, Ireland, France, Germany, Ireland and UK, Germany, Ireland]

$${}^{4}C_{3} = \frac{4!}{3!(4-3)!} = 4$$

$${}^{n}C_{k} = \frac{n!}{k!(n-k)!}$$
$${}^{n}P_{k} = \frac{n!}{(n-k)!}$$

[UK, France, Germany, UK, France, Ireland, UK, Germany, France, UK, Germany, Ireland, UK, Ireland, France, UK, Ireland, Germany, ... France, Germany, Ireland]

$${}^{4}P_{3} = \frac{4!}{(4-3)!} = 24$$

Combinations/ Permutations

```
import math
 1
2
 3
     n=4
     k=3
 4
 5
6
     Combinations = int(math.factorial(n)/math.factorial(k))
     /math.factorial(n-k))
 7
8
     print ("For {} from {}".format(n,k))
9
     print ("Combinations ",Combinations)
10
11
     Permuations = int(math.factorial(n)//math.factorial(n-k))
12
     print ("Permuations: ",Permuations)
13
```

For 4 from 3 Combinations 4 Permuations: 24

Code

Combinations/ Permutations

ain.py	8	https://perm.billbuchanan.repl.run
<pre>from itertools import permutations, combinations</pre>	- 1	Original Cofllection: ['UK', 'France', 'Germany', 'Ireland']
<pre>countries = ["UK","France","Germany","Ireland"]</pre>	- 1	('UK', 'France', 'Germany')
<pre>print("Original Cofllection: ",countries)</pre>	- 1	('UK', 'France', 'Ireland') ('UK', 'Germany', 'Ireland')
<pre>print("Combinations:")</pre>	- 1	('France', 'Germany', 'Ireland')
<pre>res=combinations(countries,3) for r in res:</pre>		Permutations:
print(r)		('UK', 'France', 'Germany')
		('UK', 'France', 'Ireland')
<pre>print("\nPermutations:",)</pre>		('UK', 'Germany', 'France') ('UK', 'Germany', 'Ireland')
<pre>res=permutations(countries,3)</pre>		('UK', 'Ireland', 'France')
for r in res:		('UK', 'Ireland', 'Germany')
print(r)		('France', 'UK', 'Germany')
		('France', 'UK', 'Ireland')
		('France', 'Germany', 'UK')
		('France', 'Germany', 'Ireland')
		('France', 'Ireland', 'UK')
		('France', 'Ireland', 'Germany')
		('Germany', 'UK', 'France')
		('Germany', 'UK', 'Ireland') ('Germany', 'France', 'UK')
		('Germany', 'France', 'Ireland')
		('Germany', 'Ireland', 'UK')
		('Germany', 'Ireland', 'France')
		('Ireland', 'UK', 'France')
		('Ireland', 'UK', 'Germany')
		('Ireland', 'France', 'UK')
		('Ireland', 'France', 'Germany')
		('Ireland', 'Germany', 'UK')
		('Ireland', 'Germany', 'France')

Code

Probabilities

Probability

$$P(n) = \frac{1}{6} \approx 0.167$$

$$P(\neg[n=6]) = \frac{5}{6} \approx 0.833$$

 $P(2 \lor 3) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$

 $P(A \wedge B) = 0$

$$P(A \land B) = P(A).P(B)$$

$$P(A \lor B) = P(A) + P(B)$$

 $P(A \land B) = P(A)P(B|A)$

Sets

Sets

Symbol	Symbol Name	Description
	such that	so that
$A \cap B$	intersection	objects belong to A and set B
$A \cup B$	union	objects belong to A or set B
$A \subseteq B$	subset	subset has fewer elements or equal to the set
\in	belongs to	when an object is within a set
¢	does not belong to	when an object is not in a set

Players — mike, fred, bert

Spectators — ian, michael, mike

Thus $A \cap B$ — mike and $A \cup B$ —mike,fred,bert,ian,michael. Then 'mike' \in Players, and 'ian' \notin Players.

Bayesian

Bayes

$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

The probability of A knowing B is the probably of B if we know A, multiplied by the probably of A and divided by the probability of B.

Eg A={'Sunny', 'Overcast', 'Raining'} B={'Cloudy', 'No Clouds'}

Eg P('Sunny')=0.3 P('Clouds')=0.2 P('Clouds' | 'Sunny') = 0.5

Then:

P('Sunny' | 'Clouds) = 0.5 * 0.3/0.2 = 0.75

Bayes $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Systems (A)	Hack (B)
Production	Phishing
Production	Network attack
Production	Phishing
Production	Network attack
R&D	Network attack
R&D	Crypto crack
R&D	Crypto crack
R&D	Phishing
R&D	Phishing
Sales	Phishing
Sales	Network attack
Sales	Phishing
Sales	Crypto crack
Sales	Phishing
Sales	Network attack

Systems	Phishing	Crypto crack	Network attack	P(A)
Sales	3	1	2	0.4
Production	2		2	0.267
R&D	2	2	1	0.333
P(B)	0.467	0.2	0.333	

P(A B)			
Systems	Phishing	Crypto crack	Network attack
Sales	0.429	0.333	0.4
Production	0.286	0	0.4
R&D	0.286	0.667	0.2

 $P(Sales|Phishing) = \frac{3}{7} = 0.429$ $P(Production|Phishing) = \frac{2}{7} = 0.286$ $P(R \& D|Phishing) = \frac{2}{7} = 0.286$

e

Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Systems (A)	Hack (B)
Production	Phishing
Production	Network attack
Production	Phishing
Production	Network attack
R&D	Network attack
R&D	Crypto crack
R&D	Crypto crack
R&D	Phishing
R&D	Phishing
Sales	Phishing
Sales	Network attack
Sales	Phishing
Sales	Crypto crack
Sales	Phishing
Sales	Network attack

	Systems	Phishing	Cryp	to crack	Network att	ack P(A)
	Sales	3	1	2	2	0.4
	Production	2		2	2	0.267
	R&D	2	2	1	-	0.333
	P(B)	0.467	0.2	0).333	
P(A B)		$D1 \cdot 1 \cdot$. 1		1 1
. (] _/	Systems	Phishing		pto crack	Networ	k attack
	Sales	0.429	0.33	33	0.4	
	Production	0.286	0		0.4	
	R&D	0.286	0.66	67	0.2	
		1-		S VILLAN		All Saint
$D(C_{munt} o)$	P(Sales) = P(Sales)	$Crypto) \times P$	(Cryptc) (-	12)	A CONTRACTOR
$P(Crypto _{k}$	$Sales) = \frac{P(Sales)}{2}$	P(Sales)		- (.	13)	
					3000	
D(Craumtoo	racking Sales) =	0.333×0.214	$\frac{1}{-0.16}$	6 (*	14)	
F(Cryptoc	racking[Sales] =	0.429	0.10	0 (.	14)	
Table 5: $P(B A)$						
	Attack		Sales	Productio	n R&D	her
	Phishin	ng	0.501	0.5	0.401	
	Crypto	crack	0.167	0	0.401	ata
	Networ	k attack	0.333	0.499	0.2	

(subject_field_characters=34,words=100)

Bayes

from sklearn.naive_bayes import GaussianNB

import numpy as np
X=np.array([[34,100],[80,230],[70,400],[55,20],[28,30],[20,25],[18,40]])

```
Y=np.array([1,1,1,0,0,0,0])
print ("Samples")
print (X)
print (Y)
```

binary_class = GaussianNB()

binary_class.fit(X, Y)

So let's say that we have a phishing email detector, and we take samples and determine the number of characters in the subject field, and the number of words in the email. Let say that the samples for true phishing are (subject_field_characters=34,words=100), (80,230), and (70,400), and the samples for not phishing are (55,20), (38,30), (20,25) and (18,40). In case the first variable is the number of characters in the subject field, and the second one is the number of words in the email. We can now go ahead and define these, and use a GaussianNB() classifier, and then fit.

```
print (binary_class.score(X, Y))
data = np.array([[28, 30], [40, 100], [4, 500], [10, 10]])
print (binary_class.predict(data))
```


Code

And where the classifier has identified that (28, 30) and (10, 10) are not phishing emails, and (40, 100), (4, 500) are.

Bayesian Decision Engine

Bayes

- Battery (b) where the battery is empty or full.
- Gauge (g) where we have fuel or empty.

Turn over (t) - where the engine will turn over or not Start (s) - where the engine starts or not.

$$p(x_1, x, 2|\epsilon) = p(x_2|x_1, \epsilon)p(x_1|\epsilon)$$
$$p(x_1, \dots, x_n|\epsilon) = \prod_{i=1}^n p(x_i|x_1 \dots, x_n, \epsilon)$$

The network is then defined as a **directed acrylic graph** of conditional interdependence, and where an arc is drawn from a cause to an effect. In Figure, the Gauge is a direct casual effect of Battery and Fuel, the Turn Over is the direct casual effect of Battery, and Start is the direct casual effect for Fuel and Turn Over. The probabilities associated with each of the nodes is defined beside the node.

Correlation

Correlation

5

Š

Х

10

Correlation

Example

20

25

C

LIttle Correlation

120

0

15

20

10

Pearson's coefficient

Pearson's coefficient measures the linear dependence between two variables.

1 is total positive linear correlation,0 is no linear correlation-1 is total negative linear correlation.

Pearson's coefficient

1	4.3
2	2.1
3	5.2
4	4.1
5	0.5
6	8.4
7	7.3
8	4.3
9	5.1
10	2.2

t-Test: Paired Two Sample for					
	Variable 1	Variable 2			
Mean	5.5	4.35			
Variance	9.166667	5.662778			
Observati	10	10			
Pearson C	0.116435				
Hypothesi	0				
df	9				
t Stat	1.002784				
P(T<=t) on	0.171081				
t Critical o	1.833113				
P(T<=t) tw	0.342162				
t Critical t	2.262157				

Correlation (Linear Regression)

	0	LS Regress	ion Results				
Dep. Variable:	I	nfant MR	R-squared:		0.	0.982	
Model:		OLS	Adj. R-squar	ed:	0.	0.982	
Method:	Least	Squares	F-statistic:		27	2755.	
Date:	Thu, 23	Jul 2020	Prob (F-stat	istic):	2.13e	-45	
Time:		12:56:57		od:	-62.	-62.894	
No. Observations:		51	AIC:		12	127.8	
Df Residuals:		50	BIC:		12	.9.7	
Df Model:		1					
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
Heart Disease DR			52.492				
Omnibus:		2.129	Durbin-Watson:		2.241		
Prob(Omnibus):		0.345	Jarque-Bera (JB):		2.040		
Skew:		-0.458	Prob(JB):		0.361		
Kurtosis:		2.652	Cond. No.		1.00		

Correlation (Linear Regression)

count

mean

std

min

25%

50%

75%

max

R² statistic

R² Statistic 12

0.3631

Root Mean Squared Error (RMSE) 12

13.10

R² Statistic ☑

0.7280

Root Mean Squared Error (RMSE) 🛽

7.70

Distributions

Normal distribution

6

Normal distribution

 $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$

Example

Cumulative

Cumulative

Laplace

Example

Others

Example

Introduction to Data Science