"From bits to information"

Introduction to Data Science

Outline

- Combinations/Permutations.
- Sets.
- Probabilities.
- Bayes.
- Correlations.
- Distributions.

"From bits to information"

Combinations/ Permutations

Combinations/ Permutations

[UK, France, Germany, UK, France, Ireland, France, Germany, Ireland and

$$
{ }^{4} C_{3}=\frac{4!}{3!(4-3)!}=4
$$

[UK, France, Germany, UK, France, Ireland, UK, Germany, France, UK, Germany, Ireland, UK, Ireland, France, UK, Ireland, Germany, ... France,

$$
{ }^{4} P_{3}=\frac{4!}{(4-3)!}=24
$$

UK, Germany, Ireland] Germany, Ireland]

$$
\begin{aligned}
{ }^{n} C_{k} & =\frac{n!}{k!(n-k)!} \\
{ }^{n} P_{k} & =\frac{n!}{(n-k)!}
\end{aligned}
$$

Combinations/ Permutations

7

```
```

 import math
    ```
```

 import math
 n=4
n=4
k=3
k=3
Combinations = int(math.factorial(n)/math.factorial(k)
Combinations = int(math.factorial(n)/math.factorial(k)
/math.factorial(n-k))
/math.factorial(n-k))
print ("For {} from {}".format(n,k))
print ("For {} from {}".format(n,k))
print ("Combinations ",Combinations)
print ("Combinations ",Combinations)
Permuations = int(math.factorial(n)//math.factorial(n-k))
Permuations = int(math.factorial(n)//math.factorial(n-k))
print ("Permuations: ",Permuations)
print ("Permuations: ",Permuations)

```
/math.factorial(n-k))
```

```
/math.factorial(n-k))
```

For 4 from 3
Combinations 4
Permuations: 24
: \quad I

```
main.py
countries = ["UK","France","Germany","Ireland"]
print("Original Cofllection: ",countries)
print("Combinations:")
res=combinations(countries,3)
for r in res:
    print(r)
print("\nPermutations:",)
res=permutations(countries,3)
for r in res:
    print(r)
```

https://perm.billbuchanan.repl.run

Original Cofllection: ['UK', 'France', 'Germany', 'Ireland'] Combinations:
('UK', 'France', 'Germany')
('UK', 'France', 'Ireland')
('UK', 'Germany', 'Ireland')
('France', 'Germany', 'Ireland')
Permutations:
('UK', 'France', 'Germany')
('UK', 'France', 'Ireland')
('UK', 'Germany', 'France')
('UK', 'Germany', 'Ireland')
('UK', 'Ireland', 'France')
('UK', 'Ireland', 'Germany')
('France', 'UK', 'Germany')
('France', 'UK', 'Ireland')
('France', 'Germany', 'UK')
('France', 'Germany', 'Ireland')
('France', 'Ireland', 'UK')
('France', 'Ireland', 'Germany')
('Germany', 'UK', 'France')
('Germany', 'UK', 'Ireland')
('Germany', 'France', 'UK')
('Germany', 'France', 'Ireland')
('Germany', 'Ireland', 'UK')
('Germany', 'Ireland', 'France')
('Ireland', 'UK', 'France')
('Ireland', 'UK', 'Germany')
('Ireland', 'France', 'UK')
('Ireland', 'France', 'Germany')
('Ireland', 'Germany', 'UK')
('Ireland', 'Germany', 'France')
"From bits to information"

Probabilities

Probability

$$
P(n)=\frac{1}{6} \approx 0.167
$$

$$
P(\neg[n=6])=\frac{5}{6} \approx 0.833
$$

$$
P(A \wedge B)=P(A) \cdot P(B)
$$

$$
P(A \wedge B)=0
$$

$$
P(A \vee B)=P(A)+P(B)
$$

$$
P(A \wedge B)=P(A) P(B \mid A)
$$

"From bits to information"

Sets

Sets

| Symbol | Symbol Name | Description |
| :--- | :--- | :--- |
| \rfloor | such that | so that |
| $A \cap B$ | intersection | objects belong to A and set B |
| $A \cup B$ | union | objects belong to A or set B |
| $A \subseteq B$ | subset | subset has fewer elements or equal to the set |
| ϵ | belongs to | when an object is within a set |
| \notin | does not belong to | when an object is not in a set |

Players - mike, fred, bert
Spectators - ian, michael, mike

Thus $A \cap B$ - mike and $A \cup B$-mike,fred,bert,ian,michael. Then 'mike' \in Players, and 'ian' \notin Players.

Sets

main.py
目
x = \{"Apple", "Dell", "Secureworks"\}
y = \{"Google", "Microsoft", "Apple"\}
\# z = x n y
\# z = x AND y
$\mathrm{z}=\mathrm{x}$.intersection(y)
print("Intersection: ",z)
\# z = xuy
\# z = x OR y
$z=x$.union(y)
print("Union: ",z)
\# z = x - y
z=x.difference(y)
Intersection : \{'Apple'\}
Union: \{'Microsoft', 'Google', 'Secureworks', 'Dell', 'Apple'\}
Difference: \{'Dell', 'Secureworks'\}
I
"Google" $\in y$
"Google" $\notin \mathrm{x}$

Code
print("Difference: ",z)
"From bits to information"

Bayesian

Bayes

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

The probability of A knowing B is the probably of B if we know A, multiplied by the probably of A and divided by the probability of B.

Eg A=\{'Sunny', 'Overcast', 'Raining'\} B=\{'Cloudy', 'No Clouds'\}

Eg

P ('Sunny')=0.3
$\mathrm{P}($ 'Clouds') $=0.2$
$\mathrm{P}\left({ }^{\prime}\right.$ Clouds' | 'Sunny') $=0.5$
Then:
$P($ 'Sunny' | 'Clouds) $=0.5$ * 0.3/0.2 $=0.75$

Bayes $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$

| Systems (A) | Hack (B) |
| :--- | :--- |
| Production | Phishing |
| Production | Network attack |
| Production | Phishing |
| Production | Network attack |
| R\&D | Network attack |
| R\&D | Crypto crack |
| R\&D | Crypto crack |
| R\&D | Phishing |
| R\&D | Phishing |
| Sales | Phishing |
| Sales | Network attack |
| Sales | Phishing |
| Sales | Crypto crack |
| Sales | Phishing |
| Sales | Network attack |

| Systems | Phishing | Crypto crack | Network attack | P(A) |
| :--- | :--- | :--- | :--- | :--- |
| Sales | 3 | 1 | 2 | 0.4 |
| Production | 2 | | 2 | 0.267 |
| R\&D | 2 | 2 | 1 | 0.333 |
| P(B) | 0.467 | 0.2 | 0.333 | |

Bayes $\quad P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$

| Systems (A) | Hack (B) |
| :--- | :--- |
| Production | Phishing |
| Production | Network attack |
| Production | Phishing |
| Production | Network attack |
| R\&D | Network attack |
| R\&D | Crypto crack |
| R\&D | Crypto crack |
| R\&D | Phishing |
| R\&D | Phishing |
| Sales | Phishing |
| Sales | Network attack |
| Sales | Phishing |
| Sales | Crypto crack |
| Sales | Phishing |
| Sales | Network attack |

| Systems | Phishing | Crypto crack | Network attack | P(A) |
| :--- | :--- | :--- | :--- | :--- |
| Sales | 3 | 1 | 2 | 0.4 |
| Production | 2 | | 2 | 0.267 |
| R\&D | 2 | 2 | 1 | 0.333 |
| P(B) | 0.467 | 0.2 | 0.333 | |

$P(A \mid B)$

| Systems | Phishing | Crypto crack | Network attack |
| :--- | :--- | :--- | :--- |
| Sales | 0.429 | 0.333 | 0.4 |
| Production | 0.286 | 0 | 0.4 |
| R\&D | 0.286 | 0.667 | 0.2 |

$P($ Crypto \mid Sales $)=\frac{P(\text { Sales } \mid \text { Crypto }) \times P(\text { Crypto })}{P(\text { Sales })}$
$P($ Cryptocracking \mid Sales $)=\frac{0.333 \times 0.214}{0.429}=0.166$
Table 5: $P(B \mid A)$

| Attack | Sales | Production | R\&D |
| :--- | :--- | :--- | :--- |
| Phishing | 0.501 | 0.5 | 0.401 |
| Crypto crack | 0.167 | 0 | 0.401 |
| Network attack | 0.333 | 0.499 | 0.2 |

Bayes

```
from sklearn.naive_bayes import GaussianNB
```

```
import numpy as np
X=np.array([[34, 100], [80, 230], [70, 400], [55, 20], [28, 30], [20, 25], [18,40]])
Y=np.array([1, 1, 1, 0,0,0,0])
print ("Samples")
print (X)
print (Y)
binary_class = GaussianNB()
binary_class.fit(X, Y)
print (binary_class.score(X, Y))
data = np.array([[28, 30], [40, 100], [4, 500], [10, 10]])
print (binary_class.predict(data))
```

So let's say that we have a phishing email detector, and we take samples and determine the number of characters in the subject field, and the number of words in the email. Let say that the samples for true phishing are
(subject_field_characters=34,words=100), $(80,230)$, and $(70,400)$, and the samples for not phishing are $(55,20),(38,30),(20,25)$ and $(18,40)$. In case the first variable is the number of characters in the subject field, and the second one is the number of words in the email. We can now go ahead and define these, and use a GaussianNB() classifier, and then fit.

Samples

[[34 100]
$\left[\begin{array}{ll}80 & 230\end{array}\right]$
[70400]
$\left[\begin{array}{ll}55 & 20\end{array}\right]$
$\left[\begin{array}{ll}28 & 30\end{array}\right]$
$\left[\begin{array}{ll}20 & 25\end{array}\right]$
$\left[\begin{array}{ll}18 & 40]\end{array}\right]$
$\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right]$
1.0
$\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]$
$\%$

Code
And where the classifier has identified that $(28,30)$ and $(10,10)$ are not phishing emails, and $(40,100),(4,500)$ are.
"From bits to information"

Bayesian Decision Engine

Bayes

Battery (b) - where the battery is empty or full.
Gauge (g) - where we have fuel or empty.
Turn over (t) - where the engine will turn over or not Start (s) - where the engine starts or not.

$$
\begin{aligned}
& p\left(x_{1}, x, 2 \mid \epsilon\right)=p\left(x_{2} \mid x_{1}, \epsilon\right) p\left(x_{1} \mid \epsilon\right) \\
& p\left(x_{1}, \ldots x_{n} \mid \epsilon\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1} \ldots x_{n}, \epsilon\right)
\end{aligned}
$$

The network is then defined as a directed acrylic graph of conditional interdependence, and where an arc is drawn from a cause to an effect. In Figure, the Gauge is a direct casual effect of Battery and Fuel, the Turn Over is the direct casual effect of Battery, and Start is the direct casual effect for Fuel and Turn Over. The probabilities associated with each of the nodes is defined beside the node.

"From bits to information"

Correlation

Variables

Correlation

Correlation

Example
LIttle
Correlation

Pearson's coefficient

Pearson's coefficient measures the linear dependence between two variables.

1 is total positive linear correlation, 0 is no linear correlation
-1 is total negative linear correlation.

Pearson's coefficient

$$
\rho_{X, Y}=\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\overline{\mu_{Y}}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

t-Test: Paired Two Sample for N

| | Variable 1 Variable 2 | |
| ---: | ---: | ---: |
| Mean | 5.5 | 4.35 |
| Variance | 9.166667 | 5.662778 |
| Observati | 10 | 10 |
| Pearson C | 0.116435 | |
| Hypothesi | 0 | |
| df | 9 | |
| t Stat | 1.002784 | |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ on | 0.171081 | |
| t Critical o | 1.833113 | |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ tw | 0.342162 | |
| t Critical t | 2.262157 | |

Correlation (Linear Regression)

OLS Regression Results

| | Infant MR | R-squared: | 0.982 |
| :--- | ---: | :--- | ---: |
| Dep. Variable: | OLS | Adj. R-squared: | 0.982 |
| Mode1: | Least Squares | F-statistic: | 2755. |
| Method: | Thu, 23 Ju1 2020 | Prob (F-statistic): | $2.13 e-45$ |
| Date: | $12: 56: 57$ | Log-Likelihood: | -62.894 |
| Time: | 51 | AIC: | 127.8 |
| No. Observations: | 50 | BIC: | 129.7 |
| Df Residuals: | 1 | | |
| Df Model: | nonrobust | | |

Correlation (Linear Regression)
import pandas as pd ver=pd.read_csv("df.csv") ver.describe()

| count | 52.000000 | 52.000000 | 52.000000 |
| :--- | ---: | ---: | ---: |
| mean | 6.107692 | 167.740385 | 36.788462 |
| std | 1.170863 | 27.728214 | 5.678361 |
| min | 4.200000 | 116.500000 | 25.600000 |
| 25% | 5.200000 | 147.875000 | 33.550000 |
| 50% | 6.150000 | 159.750000 | 36.600000 |
| 75% | 6.725000 | 183.625000 | 41.150000 |
| \max | 9.600000 | 229.900000 | 48.800000 |

$229.900000 \quad 48.800000$
Suicide DR
52.000000
14.851923
3.877006
7.800000
12.600000
14.200000
17.850000
23.900000

R^{2} statistic

$\mathbf{R}^{\mathbf{2}}$ Statistic ${ }^{\boldsymbol{Z}}$
0.3631

0.7280

Root Mean Squared Error (RMSE) [】
13.10

Actual vs. Predicted Scatter Chart ©u
190

Root Mean Squared Error (RMSE) ■

$$
7.70
$$

"From bits to information"

Distributions

Normal distribution

Normal distribution

Cumulative

Cumulative

Applied evaluator
(x)

10.303265
$\begin{array}{lll}2 & 0.18394\end{array}$
30.111565
40.067668
50.041042
$6 \quad 0.024894$
70.015099
80.009158
$\begin{array}{ll}9 & 0.005554\end{array}$
$10 \quad 0.003369$
110.002043
$12 \quad 0.001239$
$13 \quad 0.000752$
$14 \quad 0.000456$
$15 \quad 0.000277$
$16 \quad 0.000168$
$17 \quad 0.000102$
$18 \quad 6.17 \mathrm{E}-05$
$19 \quad 3.74 \mathrm{E}-05$
$20 \quad 2.27 \mathrm{E}-05$
21 1.38E-05
$22 \quad 8.35 \mathrm{E}-06$

Degrees of

Chi-squared distribution (also chi-square or X^{2} distribution) with k degrees of freedom

Sum of the squares of k

Degrees of freedom $=3$

Laplace

Others

"From bits to information"

Introduction to Data Science

