

Similarity and Matching

Outline

- Similarity Metrics.
- Similarity Hashes.
- Regular Expressions.

Similarity

Similarity

5324-9990-1234-5555 5824 9999 4234 7666

A	Q	F	Μ	u	G	×	Ε	Н	u	W	\checkmark	F	G	I
5	F	F	\checkmark	В	Μ	A	Η	G	Ν	I	Μ	R	I	В
u	x	I	u	R	В	В	0	0	Ν	K	×	F	u	\vee
I	D	D	Z	I	\checkmark	A	С	R	Е	G	F	D	Ε	Ρ
0	I	R	Z	G	Н	J	Η	I	L	Е	5	J	В	Н
Η	I	A	F	Н	u	K	\vee	A	Μ	\checkmark	D	K	R	K
Е	L	С	Ρ	т	Μ	В	5	R	R	С	Y	Ν	Ζ	A
D	Е	W	Н	0	т	G	Ν	5	L	Е	5	Е	u	A
R	Е	ĸ	×	Ν	0	L	0	Ν	D	0	Ν	W	F	D
0	D	\checkmark	Y	W	F	W	5	V	J	Q	В	С	D	K
F	5	Е	D	I	Ν	В	u	R	G	Н	Ν	A	Ζ	Ν
Х	С	A	Μ	В	R	I	D	G	Е	Ν	ĸ	5	J	Е
0	W	W	Н	5	Ν	0	A	Т	L	ĸ	W	т	F	Z
Ζ	Μ	×	D	В	Μ	Z	\vee	5	Q	5	G	L	Ε	K
0	В	В	\vee	Μ	A	Ν	С	Н	Е	5	т	Е	R	K

EDINBURGH GLASGOW DUNDEE LONDON MANCHESTER LEEDS BRIGHTON CARDIFF BIRMINGHAM NEWCASTLE OXFORD CAMBRIDGE

6

Similarity

- Block. Uses a vector space block distance is used to determine a similarity.
- Cosine Similarity. Provides a similarity measure between two strings from the angular divergence within term based vector space. Token
- Euclidean Distance. Providing a similarity measure between two strings using the vector space of combined terms as the dimensions.
- Overlap Coefficient. Providing a similarity measure between two string where it is determined to what degree a string is a subset of another.
- Q Grams Distance. This provides a similarity measure between two strings using the q-Gram approach check matching qGrams/possible matching qGrams.

- Jaro. Provides a similarity measure between two strings allowing for character transpositions.
- Jaro-Winkler. Providing a similarity measure between two strings allowing for character transpositions to a degree adjusting the weighting for common prefixes.

Search Edit Distance

- Levenshtein distance. This provides a similarity measure between two strings.
- Needleman-Wunch. This is the edit distance based similarity measure between two strings.
- Smith-Waterman. This is a similarity measure between two string.
- Smith-Waterman-Gotoh. This is a similarity measure between two strings;
- Smith-Waterman-Gotoh Affine. This is a windowed affine gap providing a similarity measure between two strings.

ber ata

Jaro

Similarity

Method	Loss of insig word	Small changes	Rearrangement of words	Punctuation	Case	Spacing
Levenshtein	78	89	44	84	17	77
NeedlemanWunch	81	89	61	84	52	80
Smith-Waterman	86	97	44	90	9	78
Smith-Waterman Gotoh	89	94	47	84	44	78
Smith-Waterman Gotoh Windowed Affine	89	94	47	84	44	78
Jaro	88	96	0	95	41	87
Jaro Winkler	93	98	0	97	47	91
QGrams Distance	89	74	70	69	4	68
Block Distance	80	33	100	25	0	0
Cosine Similarity	82	33	100	25	0	0
Euclidean Distance	55	18	100	13	0	0
Chapman Length Deviation	78	89	100	84	92	82
Overlap Coefficient	100	33	100	25	0	0
	Loans and Accounts	loans and accounts	loans and accounts	fishing, "camping"; and 'forest	Loan Account and Dealing	LoanAccountDealing
	Loans Accounts	loan and account	accounts and loans	fishing camping and forest	LOAN ACCOUNTS DEALINGS	Load, Account, Dealing

Levenshtein

$$d_{ij} = \min \begin{cases} d_{i-1,j} + c_{del}(b_i) \\ d_{i,j-1} + c_{ins}(a_j) \\ d_{i-1,j-1} + [a_j \neq b_i] \cdot c_{sub}(a_j, b_i) \end{cases}$$

ber

6

6

			Α		р]	р	1	е	С	a	ı i	n
	(0	1		2		3	4	5	6	7	′ <mark>8</mark>	9
Α		1	0		1		2	3	4	5	6	5 7	8
р		2	1		0		1	2	3	4	5	6	7
1		3	2		1	•	2	1	2	3	4	5	6
е	4	4	3		2		3	2	1	2	3	3 4	5
С	Į	5	4		3		4	3	2	1	2	2. 3	4
0	(6	5		4		5	4	3	2	3	3 4	5
r		7	6		5		6	5	4	3	4	5	6
е	8	8	7		6		7	6	5	4	5	6	7
۸		n	٦	•	6	•	70	0					
А		р	T	е	С	0	L	е					
Α	р	р	1	е	С	a	i	n					

Levenshtein

$$d_{ij} = \min \begin{cases} d_{i-1,j} + c_{del}(b_i) \\ d_{i,j-1} + c_{ins}(a_j) \\ d_{i-1,j-1} + [a_j \neq b_i] \cdot c_{sub}(a_j, b_i) \end{cases}$$

var levenshtein = require('fast-levenshtein');

```
str1='Aplecore'
str2='Applecain';
```

```
var distance = levenshtein.get(str1, str2);
console.log('Distance:\t',distance);
```

```
length = Math.max(str1.length,str2.length);
```

```
ratio = 100-100*(distance /length);
console.log('Similarity:\t',parseFloat(Math.round(ratio).toFixed(2)))
```

```
A plecore
Applecain
```


Needleman-Wunsch

erocel-pa niacelppA

12345678 ap-lecore Applecain

++++--+- -> 1x4 + (-1)*3 = 1

- Match. This is where two letters match at the same index value. The two letters at the current index are the same. For this we could assign a score of +1.
- Mismatch: This is where the letters do not match the same index. For this we could assign a score of -1.
- Indel (INsertion or DELetion). This is a deletion or insertion of a character within the alignment. For this we could assign a score of -1.

Applecain

	0	- -]	∙ -2	 -3	◄ -4	∢ -5	∢ -6	⊲ -7	 -8	 -9
а	▲ -1	-1 -2 -2 -1	-2 -3 -2 ↓ -2	-3 -4 -3 ↓ -3	-4 -5 ► -4 - 4	-5 -6 -5 ▲ -5	-6 -7 ► -6 - 6	-5 -8 -7 -5	-8 -9 -6 4-6	-9 -10 -7 ∢-7
р	-2	-2 -2 ►▲ -3 -2	0 -3 -3 0	-1 -4 ▶ -1 ∢-1	-4 -5 -2 ∢-2	-5 -6 -3 ∢-3	-6 -7 -4 ∢-4	-7 -6 -5 ∢-5	-6 -7 ► -6 - -6	-7 -8 ▶ -7 -7
-	▲ -3	-3 -3 ►▲ -4 -3	-3 -1 ▲ -4 -1	-1 -2 ► -2 -1	-2 -3 -2 - -2	-3 -4 -3 - 3	-4 -5 ► -4 - 4	-5 -6 -5 - 5	-6 -7 ► -6 - -6	-7 -8 ► -7 -7
I	▲ -4	-4 -4 ▶▲ -5 -4	-4 -2 _5 -2	-2 -2 → ▲ -3 -2	0 -3 -3 0	-3 -4 -1 -1	-4 -5 -2 <-2	-5 -6 -3 - 3	-6 -7 -4 - -4	-7 -8 -5 ∢-5
е	▲ -5	-5 -5 ►▲ -6 -5	-5 -3 ▲ -6 -3	-3 -3 -4 -3	-3 -1 _▲ -4 -1	1 -2 -2 1	-2 -3 0 ∢0	-3 -4 -1 ∢-1	-4 -5 -2 ≺-2	-5 -6 -3 ∢-3
С	▲ -6	-6 -6 ▶▲ -7 -6	-6 -4 _7 -4	-4 -4 ► ▲ -5 -4	-4 -2 _▲ -5 -2	-2 0 -3 0	2 -1 -1 2	-1 -2 1 -1	-2 -3 0 ∢0	-3 -4 -1 ∢-1
0	▲ -7	-7 -7 ▶▲ -8 -7	-7 -5 ▲ -8 -5	-5 -5 ▲ -6 -5	-5 -3 ▲ -6 -3	-3 -1 ▲ -4 -1	-1 1 -2 1	1 0 0 1	0 -1 ▶ 0 ↓ 0	-1 -2 ► -1 -1
r	▲ -8	-8 -8 ▶▲ -9 -8	-8 -6 ▲ -9 -6	-6 -6 ▶▲ -7 -6	-6 -4 ▲	-4 -2 -5 -2	-2 0 _3 0	0 0 ►▲ -1 0	0 -1 -1 0	-1 -2 ▶ -1 -1
е	▲ -9	-9 -9 • • • -10 -9	-9 -7 ▲ -10 -7	-7 -7 ►▲ -8 -7	-7 -5 ▲ -8 -5	-3 -3 • • • -6 -3	-3 -1 ▲ -4 -1	-1 -1 ▶▲ -2 -1	-1 -1 ▶▲ -2 -1	-1 -2 -2 -1

Smith-Waterman

- Similar to Needleman-Wunsh, but negative scoring cells are set to zero. The traceback for the sequence then begins within the highest scoring matrix cell and continues until we reach a zero scoring cell.
- Figure outlines an example with a scoring of +1 for a match, 0 for a mismatch, and -1 for both an insertion and a deletion, and for the string of "Aplecore" and "Applecain".

The scoring for each cell is then the highest of the three candidate scores. We then make a path from the bottom right cell to the top left by tracing the arrows. In the example:

erocel-pa niacelppA A p l - e c o r e A p p l e c a i n

		Α	р	1	e	С	0	r	e	S
	0	0	0	0	0	0	0	0	0	0
Α	0	1	0	0	0	0	0	0	0	0
р	0	0	2	1	0	0	0	0	0	0
р	0	0	1	2	1	0	0	0	0	0
1	0	0	0	2	2	1	0	0	0	0
e	0	0	0	1	3	2	1	0	1	0
С	0	0	0	0	2	4	3	2	1	1
a	0	0	0	0	1	3	4	3	2	1
i	0	0	0	0	0	2	3	4	3	2
n	0	0	0	0	0	1	2	3	4	3

Phonetic matching

Phonetic matching

Phonetically:

"Castle"

Then becomes

"k-a-s-e-l"

or more formally as "kɑːs(ə)l"

Table 1.1-1: Phonemes							
ID Phoneme	IPA Symbol	Graphemes	Example				
1	b	b, bb	big				
2	d	d, dd, ed	dare				
3	f	f, ff, ph, gh, lf, ft	four				
4	g	g, gg, gh,gu,gue	great				
5	h	h, wh	hope				
6	d	j, ge, g, dge, di, gg	$_{ m jam}$				
7	k	k, c, ch, cc, lk, qu ,q(u), ck, x	cat				
8	1	1, 11	love				
9	m	m, mm, mb, mn, lm	men				
10	n	n, nn,kn, gn, pn	need				
11	р	p, pp	pipe				
12	r	r, rr, wr, rh	rat				
13	s	s, ss, c, sc, ps, st, ce, se	sign				
14	t	t, tt, th, ed	top				
15	V	v, f, ph, ve	venue				
16	W	w, wh, u, o	whip				
17	Z	z, zz, s, ss, x, ze, se	zone				
18		s, si, z	azure				
19	t	ch, tch, tu, ti, te	chop				
20		sh, ce, s, ci, si, ch, sci, ti	$_{\rm ship}$				
21		$^{\mathrm{th}}$	throw				
22		$^{\mathrm{th}}$	leather				
23		ng, n, ngue	wrong				
24	j	y, i, j	your				
25	æ	a, ai, au	cat				
26	е	a, ai, eigh, aigh, ay, er, et, ei, au, a_e, ea, ey	pay				
27	е	e, ea, u, ie, ai, a, eo, ei, ae	end				
28	i:	e, ee, ea, y, ey, oe, ie, i, ei, eo, ay	bee				
29		i, e, o, u, ui, y, ie	it				
30	a	i, y, igh, ie, uy, ye, ai, is, eigh, i_e	kite				
31		a, ho, au, aw, ough	bought				
32	0	o, oa, o_e, o e, ow, ough, eau, oo, ew	sew				
33		o, oo, u,ou	look				
34		u, o, oo, ou	blood				
35	u:	o, oo, ew, ue, $u_e, oe, ough, ui, oew, ou$	shoe				
36		oi, oy, uoy	boy				
37	a	ow, ou, ough	cow				
38		a, er, i, ar, our, ur	dollar				
39	e	air, are, ear, ere, eir, ayer	dare				
40	:	a	arm				
41	:	ir, er, ur, ear, or, our, vr	burn				

Soundex

Soundex uses a phonetic algorithm to classify a sound as it is pronounced. It focuses on matching phrases which have minor spelling errors. A Soundex code has a letter followed by three numbers, such as C253. The first letter is the first letter of the surname.

Soundex code fo	r tailer:		т460				
Soundex code fo	r taylor:		т460				
NYSIIS for tail	er:	TALAR					
NYSIIS for tayl	or: ⁻	TAYLAR					
Phonex for tail	er:	т460					
Phonex for tayl	or:	т460					
==Metrics==							
String	String		Jaro W	Distance	Damerau	Jaro	SmithW
tailer	taylor		82.22	66.67	66.67	87.04	66.67

```
Number Letters

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R
```

We disregard the letters of A, E, I, O, U, H, W, and Y. For example, "Buchanan" becomes [here]:

B255 – "B" "C" "N" "N"
The name "Lee" becomes:
L000 = "L"

Coding

Similarity Hashes

Charikar similarity

[Back] The Charikar similarity method is often used for documents and metadata in order to located duplicates

Parameters	String 1:	this is the first string
	String 2:	this is the second string
Word 1:		
this is the first string	==== 8-bit has	sh ====
this is the first string	Hash1:	0xea
	Hash2:	0xca
	Similarity:	0.875
Word 2:	==== 24 -bit	hash ====
this is the second string	Hash1:	0x9cc9ea
this is the second string	Hash2:	0xc81ca
	Similarity:	0.791666666667
	====256-bit ha	ash ====
	Hash1:	0x582200201d9f29269cc9eaL
• Word1 = "this is the first string",	Hash2:	0x20080204a02f0b69270c81caL
word2 = this is the first string "ry!	Similarity:	0.92578125
word2 = "this is the string first" Tryl		
 word2 = this is the string first rive word1 = "this is the first string". 	====64-bit Ni	lsimsa hash ====
word2 ="this is the first help" Try!	Hash1:	0xfffffff00000000000000000000000000000
 word1 ="this is the first string", 	Hash2:	0xfffffff00000000000000000000000000000
word2 ="this keep the first help"	Similarity:	1.0
Try!		
 word1 ="this is the first string", 		
word2 ="a totally different		
sentence" Try!		

Code

Nilsimsa

a

Code

Regular Expressions

Regular Expressions

Regular Expressions

main.py

1 import re

2

st="There is not much we can do apart from contacting There is not much we can do apart from contacting f.smith@home.net to see if he would like to reboot the server at 192.168.0.1. If he can do this then I will call him on 444.3212.5431. My credit card details are 4321-4444-5412-2310 and 5430-5411-4333-5123 and my name on the card is Fred Smith (fred@home.com). I really like the name domain fred@home. Overall our target areas are SW1 7AF and EH105DT. I tested the server last night, and I think the IP address is 10.0.0.1 and there are two MAC addresses which are 01:23:45:67:89:ab or it might be 00.11.22.33.44.55. The book we will use is "At Home" and it can be bought on amazon.com or google.com, if you search for 978-1-4302-1998-9. My password is: a1b2c3 Best regards, Bert. EH14 1DJ +44 (960) 000 00 00 1/1/2009"

Python

```
4
     # reg="[a-zA-Z0-9. %+-]+@[a-zA-Z0-9. %+-]"
 5
     # reg="[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}"
 6
     # reg="\d{3}[-.]?\d{4}[-.]?\d{4}"
 7
 8
     # reg="[A-Z]{1,2}[0-9]{1,2}[A-Z]?\s[0-9][A-Z][A-Z]"
     reg ="4d{3}(\langle s|-)?\langle d{4}(\langle s|-)?\langle d{4}(\langle s|-)?\langle d{4}'
 9
10
     result = re.search(reg, st)
11
12
     print (result)
13
```

https://regex.billbuchanan.repl.run

E

۶.,

<pre.Match object; span=(262, 281), match='4321-4444-5412-2310'>

Similarity and Matching