Step-by-step guide

From the Apps interface, select Splunk Machine Learning (Figure 1).

splunk	>enterprise			6 Administra	tor ▼ 🗧 Messages ▼ Settings ▼
Apps		۵	Explore Splunk Enterprise	•	
>			<u>۶</u>		
-			Product Tours	Add Data	Splunk Apps (2
*		Update	New to Splunk? Take a tour to help you on your way.	Add or forward data to Splunk Enterprise. Afterwards, you may extract fields.	Apps and add-ons extend the capabilities of Splunk Enterprise.
4					
	Splunk Machine Lea Toolkit	rning			

Figure 1: Splunk Apps

We will now analyse a firewall log for malware. For this select "Predict Numeric Fields", and then "Create New Experiment":

Showcase	Experiments	Search Mod	dels Classic 🗸	Settings	Docs 🗗 Vid	eo Tutorials 🛽 🛽	膏 sp	olunk Machine L	earning Toolkit
Experim	ents							Create Ne	w Experiment
Smart Forecasting	g Outlier Detection	Smart Clustering	Smart Prediction	Predict Numeric Fields	Predict Categorical Fields E	Detect Numeric Outliers	Detect Categorical Outliers	Forecast Time Series	Cluster Numeric Events

Figure 2: Selecting a Predict Categorical Fields experiment

Provide the name of "Firewall" to the experiment title (Figure 3).

reate New Experin	nent	×
Experiment Type	Predict Categorical Fields 🕶	
Experiment Title	Firewall	
Description	Optional	
		lis
	Cancel	Create

Figure 3: Defining a new experiment

Next (Figure 4) entered the search of "| inputlookup firewall_traffic.csv" and select the green search button. It will then populate the data set in the page. Scroll down to the populated dataset and define the following:

Number of results in the dataset:

Parameters used in the dataset:

Which field do you think we are likely to train on:

Outline four IP addresses for source addresses:

Outline four IP addresses for destination addresses:

inputlookup firewall_tra	ffic.csv				~	All time 🔹 🔍
✓ 98,943 results (01/01/1970 00	:00:00.000 to 28/05/	2020 18:17:55.01	00)	Job	• 0.0	🕈 Smart Mode 🕶
Preprocessing Steps						
No steps added.						
+ Add a step						
Algorithm	Field to predict		Fields to use for predicting	Split for training / test: 70	/ 30	
LogisticRegression *	Select	•				
Fit Intercept						
estimate the intercept						
Notes						
(optional)						
Fit Model Open in Searc	ch Show SPL					
Raw Data Preview 亿						
bytes_received bytes_s	ent dest_port	dst_ip ‡	has_known_vulnerability \$	packets_received ‡	packets_sent ‡	receive_time :
170	85 p_53	73.147.88.9	yes	1	1	10/7/15 23:59
107	75 - 53	72 147 89 0	L Mar	1		10/7/15 22:50

Figure 4: Defining the dataset

There are 98,943 results, which is rather large for processing so reduce it to 50,000 (Figure 5).

Enter a search						
inputlookup firewall_traffic.csv head 50000			~	All time 🕶	Q	
✓ 50,000 results (01/01/1970 00:00:00.000 to 28/05/2020 18:19:12.000)	Job 🔻	п		🕈 Smart Mo	ode 🔻	

Figure 5: Filtering to 50,000 records

Next we will use Logistic Regression to predict a value for "used_by_malware" (Figure 6).

Algorithm	Field to predict	Field	Is to use for predicting	Split for training / test: 7	70 / 30	
LogisticRegression -	Select 👻		*			
Fit Intercept	filter Q					
stimate the intercept	bytes_received	1				
Notes	bytes_sent	1				
(optional)	dest_port					
	dst_ip					
Fit Model Open in Search	has_known_vulnerability					
	packets_received					
Raw Data Preview 🖄	packets_sent					
bytes_received bytes_sen	t receive_time		has_known_vulnerability	packets_received \$	packets_sent 🗘	receive_time \$
170	serial_number	91	yes	1	1	10/7/15 23:59
107	; session_id	91	yes	1	1	10/7/15 23:59
108	src_ip	152	yes	1	1	10/7/15 23:59
170	<pre>src_port</pre>	91	yes	1	1	10/7/15 23:59
4620 18	used_by_malware	. 109	no	18	19	10/7/15 23:59

Figure 6: Predicting for "used_by_malware"

Next we shall train against all the other parameters (Figure 7). Finally we are using a 70/30 split, and 70% of training and 30% for testing the model created.

Algorithm	Fie	eld to predict		Fields to use for predicting	S	plit for training / test: 70 /	30
LogisticRegression	•	used_by_malwa	re 🔻	bytes_received, byt (12) •	-	0	
Fit Intercept				filter Q			
\checkmark estimate the intercept				Select All Clear All			
Notes				✓ bytes_received			
(optional)				✓ bytes_sent			
	lto			✓ dest_port			
Fit Model Open in Sea	arch	Show SPL		✓ dst_ip			
				has_known_vulnerabilit	F		
Raw Data Preview 12				y			
bytes_received bytes_	_sent \$	dest_port ‡	dst_ip ‡	packets_received packets_sent	¢	packets_received \$	packet
170	85	p_53	73.147.88.9	✓ receive_time		1	
107	75	p_53	73.147.88.9	serial_number		1	
108	76	p_53	27.90.179.1	5 √ session_id		1	
170	85	p_53	73.147.88.9	src_ip		1	
4620	1872	p_443	226.58.156.	src_port		18	
8817	1331	p_80	126.212.21.	77 yes		10	

Figure 7: Fields used to predict

Finally, we select the "Fitting Model.." button, and waiting until the model is built. When complete we should see prediction data (Figure 8).

Outline the destination IP addresses for two false positives:

Outline the destination IP addresses for two true positives:

Now outline the following:

Precision:
Recall:
Accuracy:

F1:

Outline the confusion matrix:

used_by_malware ‡	predicted(used_by_malware) ‡	bytes_received \$	bytes_sent \$	dest_port \$	dst_ip ≑	has_known_vulnerability ‡
no	no	4620	1872	p_443	226.58.156.109	no
yes	no	4160	1243	p_443	47.242.134.132	yes
yes	no	507	976	p_443	204.243.248.73	yes
yes	yes	3950	2447	p_443	84.216.108.116	yes
yes	yes	3950	2447	p_443	84.216.108.116	yes
yes	yes	98	86	p_53	73.147.88.91	yes
yes	yes	98	86	p_53	73.147.88.91	yes
yes	yes	3950	2447	p_443	84.216.108.116	yes
yes	yes	456	669	p_80	72.8.163.120	yes
yes	no	572	1018	p_443	32.246.18.81	yes

Figure 8: Predictions

Precision 12	Recall 🛽	Accuracy 🛽	F1 12
0.83	0.82	0.82	0.83

Predicted actual \$	Predicted no \$	Predicted yes \$
no	4818 (80.7%)	1152 (19.3%)
yes	1486 (16.4%)	7580 (83.6%)

Classification Results (Confusion Matrix)

Figure 9: Confusion Matric

New Search			Save As 🔻 Close			
<pre> inputlookup firewall_traffic.csv head 50000 apply "_exp_draft_0e467230935543b98e7882eebdfce34d" `confusionmatrix ("used_by_malware","predicted(used_by_malware)")`</pre>						
✓ 2 results (before 28/05/2020 18:30:29	9.000) No Event Sampling -	🔺 Job 🔻 🔢 🔳	→ ♣ ↓			
Events Patterns Statistics (2)	Visualization					
20 Per Page 🔻 🖌 Format 🛛 Previe	SM 🔺					
Predicted actual \$	/	Predicted no ≑ 🖌	Predicted yes 🗘 🍃			
no		16033	3672			
yes		4961	25334			

Figure 10: Confusion Matric

Now click on "Open Search" in the button beside "Fit Model":

| inputlookup firewall_traffic.csv | head 50000 | fit LogisticRegression fit_intercept=true "used_by_malware" from "bytes_received" "bytes_sent" "dest_port" "dst_ip" "has_known_vulnerability" "packets_received" "packets_sent" "receive_time" "serial_number" "session_id" "src_ip" "src_port" into "_exp_draft_0e467230935543b98e7882eebdfce34d"

Next press SHIFT-ENTER, and force the "| fit ..." to move to the next line:

| inputlookup firewall_traffic.csv | head 50000

| fit LogisticRegression fit_intercept=true "used_by_malware" from "bytes_received" "bytes_sent" "dest_port" "dst_ip"
 "has_known_vulnerability" "packets_received" "packets_sent" "receive_time" "serial_number" "session_id" "src_ip" "src_port"
 into "_exp_draft_0e467230935543b98e7882eebdfce34d"

Now add:

```
| table accuracy f1 precision recall
| stats first(*) as *
```

Run the result and check the output

```
| inputlookup firewall traffic.csv | head 50000
| fit LogisticRegression fit_intercept=true "used_by_malware" from "bytes_received" "bytes_sent" "dest_port" "dst_ip"
    "has_known_vulnerability" "packets_received" "packets_sent" "receive_time" "serial_number" "session_id" "src_ip" "src_port"
    into "_exp_draft_0e467230935543b98e7882eebdfce34d"
| multireport
[ score precision_recall_fscore_support "used_by_malware" against "predicted(used_by_malware)" average=weighted
            | rename fbeta_score as f1
            | eval f1 = round(f1, 2)
           | eval precision = round(precision, 2)
            | eval recall = round(recall, 2)
            | fields f1 precision recall ]
[ score accuracy_score "used_by_malware" against "predicted(used_by_malware)"
            eval accuracy = round(accuracy_score, 2)]
| table accuracy f1 precision recall
| stats first(*) as *
What are the results:
```

<pre> inputlookup firewall_traffic.csv head 50000 apply "_exp_draft_0e467230935543b98e7882eebdfce34d" multireport [score precision_recall_fscore_support "used_by_malware" against "predicted(used_by_malware)" average=weighted</pre>	All time ▼ Q		
<pre>[score accuracy_score "used_by_malware" against "predicted(used_by_malware)"</pre>			
Events Patterns Statistics (1) Visualization			
20 Per Page Format Preview			
accuracy ≑ ✓ f1 ≑ ✓ precision ≑ ✓	recall 🗢 🖌		
0.80 0.80 0.81	0.80		
Saving Experiment ×			

Experiment Title	Firewall		
Description	optional		
		Cancel	Save

Figure 9: Saving experiment

SVM

We will now use an SVM (Support Vector Machine) model and which is a supervised learning technique. Overall, it is used to create two categories, and will try to allocate each of the training values into one category or the other. Basically, we have points in a multidimensional space, and try to create a clear gap between the categories. New values are then placed within one of the two categories. In this case we will train with SVM, and rerun the model. Now determine the following:

Precision:		
Recall:		
Accuracy:		
F1:		

Algorithm

Precision 12	Recall 12	Accuracy 🛽	F1 12
0.96	0.96	0.96	0.96

Classification Results (Confusion Matrix) 12		
Predicted actual \$	Predicted no ¢	Predicted yes \Rightarrow
no	5357 (91.7%)	484 (8.3%)
yes	75 (0.8%)	9071 (99.2%)

Figure 9: Saving experiment

Precision 12	Recall 12	Accuracy 🛽	F1 12
0.99	0.99	0.99	0.99

Predicted actual \$	Predicted no \$	Predicted yes \$
no	5852 (98.4%)	95 (1.6%)
yes	112 (1.2%)	8923 (98.8%)

Classification Results (Confusion Matrix)

Appendix

| inputlookup firewall_traffic.csv | head 50000 | apply

"_exp_draft_0e467230935543b98e7882eebdfce34d"

| table "used_by_malware", "predicted(used_by_malware)", "bytes_received" "bytes_sent" "dest_port" "dst_ip" "has_known_vulnerability" "packets_received" "packets_sent" "receive_time" "serial_number" "session_id" "src_ip" "src_port"

| inputlookup firewall_traffic.csv | head 50000

| fit SVM "used_by_malware" from "bytes_received" "bytes_sent" "dest_port" "dst_ip" "has_known_vulnerability" "packets_received" "packets_sent" "receive_time" "serial_number" "session_id" "src_ip" "src_port" into "_exp_draft_0e467230935543b98e7882eebdfce34d"

| inputlookup firewall_traffic.csv | head 50000 | fit RandomForestClassifier "used_by_malware" from "bytes_received" "bytes_sent" "dest_port" "dst_ip" "has_known_vulnerability" "packets_received" "packets_sent" "receive_time" "serial_number" "session_id" "src_ip" "src_port" into "_exp_draft_0e467230935543b98e7882eebdfce34d"

| inputlookup firewall_traffic.csv | head 50000

| fit GaussianNB "used_by_malware" from "bytes_received" "bytes_sent" "dest_port" "dst_ip" "has_known_vulnerability" "packets_received" "packets_sent" "receive_time" "serial_number" "session_id" "src_ip" "src_port" into

"_exp_draft_0e467230935543b98e7882eebdfce34d"